[1] HALFORD G R,MCGAW M,BILL R C,et al. Bithermal fatigue:A link between isothermal and thermomechanical fatigue[C]//Low Cycle Fatigue,ASTM STP 942. Philadelphia:American Society for Testing and Materials,1988:625-637. [2] RAMESH M,LEBER H J,JANSSENS K G F,et al. Thermomechanical and isothermal fatigue behavior of 347 and 316L austenitic stainless tube and pipe steels[J]. International Journal of Fatigue,2011,33(5):683-691. [3] RAMESH M,LEBER H J,DIENER M,et al. Conducting thermomechanical fatigue test in air at light water reactor relevant temperature intervals[J]. Journal of Nuclear Materials,2011,415(1):23-30. [4] REDDY G V P,NAGESHA A,SANDHYA R,et al. Thermomechanical and isothermal fatigue behavior of 316LN stainless steel with varying nitrogen content[J]. Metallurgical and Materials Transactions A,2015,46:696-707. [5] SPERA D A. What is thermal fatigue?[C]//Thermal Fatigue of Materials and Components,ASTM STP 61. Pennsylvania:American Society for Testing and Materials,1976:3-9. [6] 余伟炜,王勇,薛飞,等. 国内外金属材料热机械疲劳试验方法标准比较[J]. 理化检验(物理分册),2011,47(2):102-106. YU Weiwei,WANG Yong,XUE Fei,et al. Comparison between domestic and overseas standards for metallic thermo-mechanical fatigue testing method[J]. Physical Testing and Chemical Analysis(Part A:Physical Testing),2011,47(2):102-106. [7] WANG L,YU D,XUE F,et al. Fatigue behaviors of Z2CND18.2N stainless steel under thermal-mechanical cycling[J]. Acta Metallurgica Sinica (English Letters),2011,24(2):101-108. [8] CHRIST H J,BAUER V. Effect of creep and oxidation on the isothermal and thermomechanical fatigue behavior of an austenitic stainless steel[J]. Journal of ASTM International,2011,8(8):178-197. [9] 张东辉,乔鹏瑞,杨勇,等. 中国快堆及先进核燃料循环体系发展战略思考[J]. 原子能科学技术,2019,53(10):1816-1820. ZHANG Donghui,QIAO Pengrui,YANG Yong,et al. Strategic thinking on development of China fast reactor and advanced nuclear fuel cycle system[J]. Atomic Energy Science and Technology,2019,53(10):1816-1820. [10] 王琦安,龙斌,王西涛,等. 中国钠冷快堆材料研发体系的研究[J]. 钢铁研究学报,2014,26(9):1-6. WANG Qian,LONG Bin,WANG Xitao,et al. Study on research and development system of materials for sodium-cooled fast reactor technology[J]. Journal of Iron and Steel Research,2014,26(9):1-6. [11] BAKIS C E,CASTELLI M G,ELLIS J R. Thermomechanical loading in pure torsion:test control and deformation behavior[C]//Advances in Multiaxial Fatigue,ASTM STP 119. Philadelphia,American Society for Testing and Materials,1993:223-243. [12] KALLURI S,BONACUSE P J. An axial-torsional,thermomechanical fatigue testing technique[C]//Multiaxial Fatigue and Deformation Testing Techniques,ASTM STP 1280. Colorado,American Society for Testing and Materials,1997:184-207. [13] CUI L,WANG P. Lifetime prediction of steam turbine components under multiaxial thermo-mechanical fatigue loading[J]. Applied Mechanics and Materials,2012,151:255-259. [14] GOSAR A,NAGODE M. Dissipated energy-based fatigue lifetime calculation under multiaxial plastic thermo-mechanical loading[J]. International Journal of Damage Mechanics,2015,24(1):41-58. [15] LI D,SHANG D,ZHANG C,et al. Thermo-mechanical fatigue damage behavior for Ni-based superalloy under axial-torsional loading[J]. Materials Science & Engineering A,2018,719:61-71. [16] SUN J,YUAN H. Life assessment of multiaxial thermomechanical fatigue of a nickel-based superalloy Inconel 718[J]. International Journal of Fatigue,2019,120:228-240. [17] SUN J,YUAN H. Cyclic plasticity modeling of nickel-based superalloy Inconel 718 under multi-axial thermo-mechanical fatigue loading conditions[J]. International Journal of Fatigue,2019,119:89-101. [18] CHRIST H J. Is thermomechanical fatigue life predictable?[J]. Procedia Engineering,2013,55:181-190. [19] YAMAUCHI M,OHTANI T,TAKAHASHI Y. Thermal fatigue behavior of a SUS304 pipe under longitudinal cyclic movement of axial temperature distribution[C]//Thermomechanical Fatigue Behavior of Materials:Second Volume,ASTM STP 1263. Arizona,American Society for Testing and Materials,1996:117-129. [20] CHRIST H J. Effect of environment on thermomechanical fatigue life[J]. Materials Science and Engineering A,2007,468-470:98-108. [21] GUTH S,DOLL S,LANG K H. Lifetime,Influence of phase angle on life time,cyclic deformation and damage behavior of Mar-M247 LC under thermo-mechanical fatigue[J]. Materials Science and Engineering A,2015,642:42-48. [22] JONES J,WHITTAKER M,LANCASTER R,et al. The influence of phase angle,strain range and peak cycle temperature on the TMF crack initiation behaviour and damage mechanisms of the nickel-based superalloy,RR1000[J]. International Journal of Fatigue,2017,98:279-285. [23] PAHLAVANYALI S,DREW G,RAYMENT A,et al. Oxidation assisted thermomechanical fatigue failure of polycrystalline superalloys[J]. Materials Science and Technology,2007,23(12):1454-1460. [24] MANNAN S L. Role of dynamic strain ageing in low cycle fatigue[J]. Bulletin of Materials Science,1993,16(6):561-582. [25] CHOUDHARY B K. Activation energy for serrated flow in type 316L(N) austenitic stainless steel[J]. Materials Science and Engineering A,2014(603):160-168. [26] KIM D W,RYU W S,HONG J H. Effect of nitrogen on the dynamic strain ageing behavior of type 316 L stainless steel[J]. Journal of Materials Science,1998,33:675-679. [27] SAMUEL K G,MANNAN S L,RODRIGUEZ P R. Serrated yielding in AISI 316 stainless steel[J]. Acta Metallurgica,1988,36(8):2323-2327. [28] PHAM M S,HOLDSWORTH S R. Dynamic strain ageing of AISI 316L during cyclic loading at 300℃:Mechanism,evolution,and its effects[J]. Materials Science and Engineering A,2012(556):122-133. [29] ZAUTER R,PETTY F,CHRIST H J,et al. Thermomechanical fatigue of the austenitic stainless steel AISI 304L[C]//Thermomechanical Fatigue Behavior of Materials,ASTM STP 1186. Philadelphia,American Society for Testing and Materials,1993:70-90. [30] SRINIVASAN V S,SANDHYA R,VALSAN M,et al. The influence of dynamic strain ageing on stress response and strain-life relationship in low cycle fatigue of 316L(N) stainless steel[J]. Scripta Mattialia,1997,37(10):1593-l 598. [31] ARMAS A F,BETTIN O R,ARMAS I A,et al. Strain aging effects on the cyclic behavior of austenitic stainless steels[J]. Journal of Nuclear Materials,1998,155-157:646-649. [32] HONG S G,LEE K O,LEE S B. Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel[J]. International Journal of Fatigue,2005,27:1420-1424. [33] HONG S G,LEE S B. Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel[J]. Journal of Nuclear Materials,2005,340:307-314. [34] REEDY G V P,NAGESHA A,KANNAN R,et al. Thermomechanical fatigue behavior of nitrogen enhanced 316LN stainless steel:Effect of cyclic strain[J]. International Journal of Fatigue,2017,103:176-184. [35] WEISS J,PINEAU A. Fatigue and creep-fatigue damage of austenitic stainless steels under multiaxial loading[J]. Metallurgical Transaction A,1993,24A:2247-2261. [36] DENG P,PENG Q,HAN E H,et al. Effect of the amount of cold work on corrosion of type 304 nuclear grade stainless steel in high-temperature water[J]. Corrosion,2017,73(10):1237-1249. [37] MAZÁNOVÁ V,HECZKO M,POLÁK J. Fatigue crack initiation and growth in 43Fe-25Ni-22.5Cr austenitic steel at a temperature of 700℃[J]. International Journal of Fatigue,2018,114:11-21. [38] REGER M,RÉMY L. Fatigue oxidation interaction in in 100 superalloy[J]. Metallurgical Transaction A,1988,19A:2259-2268. [39] REUCHET J,RÉMY L. Fatigue oxidation interaction in a superalloy-application to life prediction in high temperature low cycle fatigue[J]. Metallurgical Transaction A,1983,14A:141-149. [40] SKELTON R P,BUCKLOW J I. Cyclic oxidation and crack growth during high strain fatigue of low alloy steel[J]. Metal Science,1978,12(2):64-70. [41] WARD G,HOCKENHULL B S,HANCOCK P. The effect of cyclic stressing on the oxidation of a low-carbon steel[J]. Metallurgical Transaction A,1974,5:1451-1455. [42] NEU R W,SEHITOGLU H. Thermomechanical fatigue,oxidation,and creep:Part I. Damage mechanisms[J]. Metallurgical Transaction A,1989,20A:1755-1767. [43] CRUCHLEY S,LE H Y,EVANS H E,et al. The role of oxidation damage in fatigue crack initiation of an advanced Ni-based superalloy[J]. International Journal of Fatigue,2015,81:265-274. [44] PETRÁŠ R,ŠKORÍK V,POLÁK J. Thermomechanical fatigue and damage mechanisms in Sanicro 25 steel[J]. Materials Science and Engineering A,2016,650:52-62. [45] MEVREL R. Cyclic oxidation of high-temperature alloys[J]. Materials Science and Technology,1987,3(7):531-535. [46] LAVERADE D,ACEBO T G,CASTRO F. Continuous and cyclic oxidation of T91 ferritic steel under steam[J]. Corrosion Science,2004,46:613-631. [47] RAO G S,SRINATH J,NARAYANAN P R,et al. Thermomechanical fatigue behavior of SS304[J]. Transactions of the Indian Institute of Metals,2016,69(2):387-392. [48] NAGESHA A,VALSAN M,KANNAN R,et al. Thermomechanical fatigue evaluation and life prediction of 316L(N) stainless steel[J]. International Journal of Fatigue,2009,31:636-643. [49] REDDY G V P,SANDHYA R,SANKARAN S,et al. Low cycle fatigue behavior of 316LN stainless steel alloyed with varying nitrogen content:part I:cyclic deformation behavior[J]. Metallurgical and Materials Transactions A,2014,45:5044-5056. [50] REDDY G V P,MARIAPPAN K,KANNAN R,et al. Effect of strain rate on low cycle fatigue of 316LN stainless steel with varying nitrogen content:Part-I Cyclic deformation behavior[J]. International Journal of Fatigue,2015,81:309-317. [51] BYRNES M L G,GRUJICIC M,OWEN W S. Nitrogen strengthening of a stable austenitic stainless steel[J]. Acta Metallurgica,1987,35(7):1853-1862. [52] REDDY G V P,SANDHYA R,PARAMESWARAN P,et al. Creep-fatigue interaction behavior of 316LN austenitic stainless steel with varying nitrogen content[J]. Materials & Design,2015,88:972-982. [53] SPINDLER M W. An improved method for calculation of creep damage during creep-fatigue cycling[J]. Materials Science and Technology,2007,23(12):1461-1470. [54] RODRIGUEZ P,RAO K B S. Nucleation and growth of cracks and cavities under creep-fatigue interaction[J]. Progress in Materials Science,1993,37(5):403-480. [55] YAN X,ZHANG X,TU S T,et al. Review of creep-fatigue endurance and life prediction of 316 stainless steels[J]. International Journal of Pressure Vessels and Piping,2015,126-127:17-28. [56] TAIRA S,FUJINO M,YOSHIDA M. Grain boundary sliding in isothermal and thermal fatigue of 304 stainless steel[J]. The Society of Materials Science,1978,27(296):47-53. [57] KUWABARA K,NITTA A. Thermal-mechanical low-cycle fatigue under creep-fatigue interaction on type 304 stainless steels[J]. Fatigue of Engineering Materials and Structures,1979,2:293-304. [58] TAIRA S,FUJINO M. In-phase thermal fatigue strength of steels and some characteristic microcracks[J]. The Society of Materials Science,1976,25(271):375-381. [59] ZAMRIK S Y,DAVIS D C,FIRTH L C. Isothermal and thermomechanical fatigue of type 316 stainless steel[C]//Thermomechanical Fatigue Behavior of Materials:Second Volume,ASTM STP 1263. Arizona,American Society for Testing and Materials,1996:96-116. [60] KUMAR T S,YADAV S D,NAGESHA A,et al. Isothermal and thermomechanical fatigue behaviour of type 316LN austenitic stainless steel base metal and weld joint[J]. Materials Science & Engineering A,2020,772:138627. [61] XUE F,LUO Z,YU W,et al. Thermo-mechanical fatigue behavior investigation and fracture analysis on austenitic stainless steel of surge line in nuclear power plant[J]. Advanced Materials Research,2010,118-120:166-170. [62] 何琨,周军,罗强,等. 核电用316LN不锈钢的热机械疲劳性能研究[J]. 核动力工程,2016,37(4):48-52. HE Kun,ZHOU Jun,LUO Qiang,et al. Study on thermal mechanical fatigue performance of 316LN stainless steel[J]. Nuclear Power Engineering,2016,37(4):48-52. [63] NAGESHA A,KANNAN R,PARAMESWARAN P,et al. A comparative study of isothermal and thermomechanical fatigue on type 316L(N) austenitic stainless steel[J]. Materials Science and Engineering A,2010,527:5969-5975. [64] LEBER H J,RITTER S,SEIFERT H P. Thermo-mechanical and isothermal low-cycle fatigue behavior of type 316L stainless steel in high-temperature water and air[J]. Corrosion,2013,69(10):1012-1023. [65] LI B,ZHENG Y,SHI S,et al. Microcrack initiation mechanisms of 316LN austenitic stainless steel under in-phase thermomechanical fatigue loading[J]. Materials Science and Engineering A,2019,752:1-14. [66] LI B,ZHENG Y,SHI S,et al. Cyclic deformation and cracking behavior of 316LN stainless steel under thermomechanical and isothermal fatigue loadings[J]. Materials Science and Engineering A,2020,773:138866. [67] LI B,ZHENG Y,LIU C,et al. Torsional thermomechanical fatigue behavior of 316LN stainless steel[J]. Materials Science and Engineering A,2020,789:139676. [68] ZAUTER R,CHRIST H J,MUGHRABI H. Some aspects of thermomechanical fatigue of AISI 304L stainless steel:Part I. Creep-fatigue damage[J]. Metallurgical and Materials Transactions A,1994,25A:401-406. [69] SHI H J,WANG Z,SU H H. Thermomechanical fatigue of a 316L austenitic steel at two different temperature intervals[J]. Scripta Materialia,1996,35(9):1107-1113. [70] HORMOZI R,BIGLARI F,NIKBIN K. Experimental study of type 316 stainless steel failure under LCF/TMF loading conditions[J]. International Journal of Fatigue,2015,75:153-169. |