• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (17): 193-204.doi: 10.3901/JME.2025.17.193

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

基于迭代式局部加权线性回归的汽车座椅滑轨剥离强度预测

陈钱1,2, 董兴建1,2, 陈康康1,2, 刘文博3, 袁顺3, 吴培桂3, 倪洪斌3   

  1. 1. 上海交通大学机械系统与振动国家重点实验室 上海 200240;
    2. 上海交通大学振动、冲击、噪声研究所 上海 200240;
    3. 恺博(常熟)座椅机械部件有限公司 苏州 215500
  • 收稿日期:2024-08-29 修回日期:2025-03-25 出版日期:2025-09-05 发布日期:2025-10-24
  • 作者简介:陈钱,男,1999年出生,博士研究生。主要研究方向为旋转机械智能诊断的可解释性研究。E-mail:chenqian2020@sjtu.edu.cn;董兴建(通信作者),男,1977年出生,博士,副教授,博士研究生导师。主要研究方向为振动分析与控制、振动超材料和结构疲劳分析。E-mail:donxij@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12272219)。

Peeling Force Prediction of Automobile Seat Slide Rail Based on Iterative Local Weighted Linear Regression

CHEN Qian1,2, DONG Xingjian1,2, CHEN Kangkang1,2, LIU Wenbo3, YUAN Shun3, WU Peigui3, NI Hongbin3   

  1. 1. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240;
    2. Institute of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200240;
    3. KEIPER Seating Mechanisms Co., Ltd., Suzhou 215500
  • Received:2024-08-29 Revised:2025-03-25 Online:2025-09-05 Published:2025-10-24

摘要: 汽车座椅滑轨的剥离强度能够全面反映滑轨的安全强度,是汽车座椅安全评估的重要一环。现有的滑轨剥离强度获取方式主要为实物试验法和数值仿真法,但却存在成本高、耗时长、评估不全面等问题。因此,将数值仿真和统计回归相结合,建立包含敏感性分析、数据集构建、回归模型预测的完整汽车座椅滑轨剥离强度预测框架,是解决上述难题的可行途径。具体而言,首先借助可解释的线性回归获取滑轨各几何变量的敏感性;然后以变量敏感性为基础构建评估工况差异程度的距离度量,提出基于稀疏原则的数据集合理构建方案;最后建立迭代式局部加权线性回归实现对滑轨剥离强度的精准预测,并以最近相邻样本距离为桥梁实现数据集补充代价的定量评估。实验结果表明,迭代式工况选取策略和距离加权策略有效降低了局部模型对近邻样本数量的敏感性,所提迭代式局部加权线性回归方法的预测表现优于同类局部回归方法和其他统计学习方法。同时,考虑数据获取成本,以间接对比的方式,验证了所提稀疏原则采样方法在数据集构建中的优越性。最终,所提剥离强度预测框架在150个仿真测试工况的平均误差为3.3 kN、平均误差率为4.3%,在3个实物测试工况的误差在2 kN以内,误差率在4%以内,预测结果较为优异。

关键词: 座椅滑轨, 剥离强度, 数据驱动, 敏感性分析, 局部加权线性回归

Abstract: The peeling force (PF) of the car seat slide rail, an important part of the safety assessment, can comprehensively reflect the safety of the slide rail. The existing PF measuring methods are mainly based on physical tests or numerical simulations, with the problems of high cost, time consumption, incomplete evaluation, and so on. Therefore, we combine numerical simulation and statistical regression to propose a complete PF prediction framework for the automobile seat slide including sensitivity analysis, dataset construction, and force prediction. Firstly, the sensitivity of each geometric variable of the slide rail is obtained by the interpretable linear regression. Secondly, the distance metric is constructed based on the variable sensitivity to evaluate the mutual difference between different working conditions. Thirdly, a reasonable construction scheme of the dataset based on the principle of sparseness is proposed. Finally, iterative local weighted linear regression (ILWLR) is established to achieve an accurate prediction of the slide PF, and the nearest adjacent sample distance is used to quantitatively evaluate the cost of the dataset supplement. Experimental results show that the iterative selection strategy and the weighted distance effectively reduce the model sensitivity to the number of nearest neighbor samples, and the proposed ILWLR method achieves better prediction performance than other local regression methods and statistical learning methods. Besides, considering the cost of data acquisition, an indirect comparison is conducted to verify the superiority of the proposed sparse principle sampling over random sampling in dataset construction. Finally, the mean absolute error (MAE) of the proposed PF prediction framework is 3.3 kN the mean relative error (MRE) is 4.3% in 150 simulated test conditions, and the absolute error is within 2 kN and the relative error is 4% in three physical test conditions, which is excellent for PF prediction task.

Key words: slide rail, peel strength, data driven, sensitivity analysis, locally weighted linear regression

中图分类号: