• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (15): 261-274.doi: 10.3901/JME.2025.15.261

• 人因与具身智能 • 上一篇    

扫码分享

基于肌肉协同特征的康复机器人辅助踏步运动关节角度估计

冯永飞1,2, 杨圣业1, 王琦3, 卢衍正3, 田俊杰2, 王洪波2,3, 牛建业3   

  1. 1. 宁波大学机械工程与力学学院 宁波 315211;
    2. 复旦大学工程与应用技术研究院 上海 200433;
    3. 燕山大学机械工程学院 秦皇岛 066000
  • 收稿日期:2024-11-25 修回日期:2025-02-14 发布日期:2025-09-28
  • 作者简介:冯永飞,男,1988年出生,博士,讲师,硕士研究生导师。主要研究方向为医疗康复机器人、并联机器人理论与应用。E-mail:fengyongfei@nbu.edu.cn;牛建业(通信作者),男,1982年出生,博士,副教授,博士研究生导师。主要研究方向为医疗康复机器人、并联机器人理论与应用。E-mail:jyniu@ysu.edu.cn
  • 基金资助:
    国家自然科学基金(52305025); 河北省自然科学基金(E2023203057); 中国博士后科学基金(2023M740662); 宁波市国际合作(2023H014)资助项目。

Joint Angle Estimation of Rehabilitation Robot-assisted Step Movement Based on Muscle Coordination Features

FENG Yongfei1,2, YANG Shengye1, WANG Qi3, LU Yanzheng3, TIAN Junjie2, WANG Hongbo2,3, NIU Jianye3   

  1. 1. School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211;
    2. Academy for Engineering and Technology, Fudan University, Shanghai 200433;
    3. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066000
  • Received:2024-11-25 Revised:2025-02-14 Published:2025-09-28

摘要: 针对脑卒中患者肢体与康复机器人交互协同性差和动作不自然的问题,提出一种基于肌肉协同特征(Temporal-spatial muscle synergy feature, TSMS)、双向长短期记忆网络(Bi-directional long short-term memory, BiLSTM)与注意力机制(Attention)四肢多关节角度连续估计算法(TSMS-BiLSTM-Attention)。设计制作床上四肢协同康复机器人,并建立康复机器人上肢和下肢模块的运动学模型。采集人体踏步运动的上肢和下肢表明肌电信号(Surface electromyography,s EMG)和惯性传感器信号(Inertial measuring unit,IMU)。利用非负矩阵分解提取人体踏步运动中的静态肌肉协同特征,并确定4种肌肉协同模式。提出肌肉协同特征的TSMS-BiLSTM-Attention关节角度估计模型,用以估计运动中的四肢关节角度,并采用带异常值的非负矩阵分解算法对s EMG信号实时提取肌肉协同特征。通过IMU测量的欧拉角与四肢运动学模型计算关节角度的测量值。基于TSMS-BiLSTM-Attention模型提取s EMG信号的时空信息,建立四肢s EMG信号与关节角度序列间的映射关系。招募了7名受试者开展踏步运动实验,并整理、分析了相关实验数据。结果表明基于肌肉协同特征的关节角度估计表现显著优于时域、频域和时频特征,关节角度估计的决定系数分别为0.92、0.88、0.86和0.91。对提出的踏步运动关节角度估计模型在床上四肢康复机器人上进行验证,在主动康复训练中,髋关节、膝关节、肩关节、肘关节在线回归的均方根误差分别为3.56°、2.11°、2.36°和3.39°,相对分析误差分别为5.63°、10.13°、7.92°和7.24°。

关键词: 康复机器人, 肢体康复, 表面肌电信号, 肌肉协同, 关节角度估计

Abstract: Aiming at the problems of poor coordination and unnatural movement between limbs of stroke patients and rehabilitation robots, a continuous multi-joint angle estimation method based on temporal-spatial muscle synergy feature(TSMS), bi-directional long short-term memory(BiLSTM) and attention is proposed. A bed four-limb collaborative rehabilitation robot is designed and developed, and kinematics models of the upper limb and lower limb modules are established. Surface electromyographys(sEMG)and inertial measuring unit(IMU) are collected from the upper and lower limbs of human stepping movement. Non-negative matrix factorization(NMF) is used to extract the static muscle coordination features of human stepping movement, and four muscle coordination patterns are determined. The TSMS-BiLSTM-Attention joint angle estimation model of muscle coordination features is proposed to estimate the joint angle of limbs in the movement, and the NMF algorithm with outliers is used to extract muscle coordination features from sEMG signals in real time. The measured value of joint angle is calculated by using the Euler angle measured by IMU and the kinematic model of limbs. The spatiotemporal information of sEMG signal is extracted based on TSMS-BiLSTM-Attention model, and the mapping relationship between sEMG signal and joint angle sequence is established. Seven subjects are recruited to carry out the step exercise experiment, and the relevant experimental data are sorted out and analyzed. The results show that the joint angle estimation performance based on muscle coordination features is significantly better than the time domain, frequency domain, and time-frequency features, and the determination coefficients of joint angle estimation are 0.92, 0.88, 0.86 and 0.91, respectively. The step movement joint angle estimation model proposed in this paper is verified on the bed four-limb rehabilitation robot. In active rehabilitation training, the root-mean-square errors of hip, knee, shoulder, and elbow joints are 3.56°, 2.11°, 2.36° and 3.39° respectively, and the relative analysis errors are 5.63°, 10.13°, 7.92°, and 7.24° respectively.

Key words: rehabilitation robot, limb rehabilitation, surface electromyography signal, muscle coordination, joint angle estimation

中图分类号: