• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (15): 209-220.doi: 10.3901/JME.2025.15.209

• 人-机器人协作 • 上一篇    

扫码分享

外骨骼机器人高实时高能效控制器研究

王泽正1,2, 包颖炜1,2, 李慧莱1,2, 李驰1,2, 孙茂文1,2, 欧阳小平1,2   

  1. 1. 浙江大学机械工程学院 杭州 310058;
    2. 浙江大学流体动力基础件与机电系统全国重点实验室 杭州 310027
  • 收稿日期:2024-12-02 修回日期:2025-05-20 发布日期:2025-09-28
  • 作者简介:王泽正,男,1999年出生,博士研究生。主要研究方向为外骨骼机器人。E-mail:12325112@zju.edu.cn;欧阳小平(通信作者),男,1974年出生,博士,教授,博士研究生导师。主要研究方向为飞机液压,电液智能控制,外骨骼机器人。E-mail:ouyangxp@zju.edu.cn
  • 基金资助:
    教育部联合基金(8091B042201); 国家自然科学基金(52305077,U2141209)。

Real-time and High-efficiency Hardware Circuits Design for Assistive Exoskeleton Robots

WANG Zezheng1,2, BAO Yingwei1,2, LI Huilai1,2, LI Chi1,2, SUN Maowen1,2, OUYANG Xiaoping1,2   

  1. 1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310058;
    2. State Key Laboratory of Fluid Power Components and Mechatronic Systems, Zhejiang University, Hangzhou 310027
  • Received:2024-12-02 Revised:2025-05-20 Published:2025-09-28

摘要: 外骨骼机器人在多个实验室环境中取得了成功,但实际部署中仍面临着一系列与控制器硬件相关的挑战,包括控制器体积过大,实时性不足,计算资源瓶颈等问题。为了解决这些问题,开发了一套用于外骨骼机器人的具有可扩展性的硬件电路系统,同时兼顾了实时性和高算力特性。通过对控制器硬件信号流向进行建模,优化通信线路和流量分配,降低了系统通信延迟。根据外骨骼机器人在空间和时间上对算力需求的差异,设计了基于步态的实时任务调度算法,优化了算力分配。通过并行流水和模块折叠复用的方式来设计运算加速器,有效减少了硬件资源的消耗,提高了系统算力。开展了控制器实时性测试、算力测试和助力外骨骼机器人负重行走试验。经测试,所设计的控制器主从通信延迟小于20μs,算力功耗比15 GOPS/W,相比于主流控制器架构具有低延迟高算力特性。在平地,上下坡负重行走体现出良好的跟踪效果,为外骨骼机器人更广泛的应用打下了硬件基础。

关键词: 外骨骼机器人, 控制器硬件, 实时性, 任务调度, 算力优化

Abstract: The exoskeleton robot has achieved success in multiple laboratory environments, but there are still a series of challenges related to the controller hardware in real-world deployment, including large controller size, insufficient real-time performance, and computational resource bottlenecks. To address these issues, a scalable hardware circuit system for the exoskeleton robot, balancing both real-time performance and high computational power characteristics is developel. By modeling the signal flow of the controller hardware, optimizing communication lines and traffic distribution, the system’s communication delay is reduced. Based on the varying computational power demands of the exoskeleton robot in space and time, a gait-based real-time task scheduling algorithm is designed to optimize the allocation of computational resources. The computational accelerator is designed using parallel pipelining and module folding to effectively reduce hardware resource consumption and improve system performance. Real-time performance tests, computational power tests, and load-walking experiments with the exoskeleton robot are conducted. The tests showed that the designed controller’s master-slave communication delay is less than 20 μs, and the computational power efficiency is 15 GOPS/W, demonstrating low latency and high computational power compared to mainstream controller architectures. The exoskeleton robot demonstrated excellent tracking performance during weighted walking on flat ground and uphill, laying the hardware foundation for its broader application.

Key words: exoskeleton robots, controller hardware, real-time performance, task scheduling, computational optimization

中图分类号: