• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (15): 185-195.doi: 10.3901/JME.2025.15.185

• 人-机器人协作 • 上一篇    

扫码分享

半主动电液驱动的下肢负重外骨骼机器人设计与控制

包颖炜1,2, 杨波1,2, 孙茂文1,2, 王泽正1,2, 房理想1,2, 欧阳小平1,2   

  1. 1. 浙江大学机械工程学院 杭州 310058;
    2. 浙江大学流体动力基础件与机电系统全国重点实验室 杭州 310027
  • 收稿日期:2024-11-03 修回日期:2025-05-10 发布日期:2025-09-28
  • 作者简介:包颖炜,男,1999年出生,博士研究生。主要研究方向为助力外骨骼机器人。E-mail:baoyingwei@zju.edu.cn;杨波,男,1989年出生,博士研究生。主要研究方向为电液伺服控制。E-mail:yang_bo@zju.edu.cn;欧阳小平(通信作者),男,1974年出生,博士,教授,博士研究生导师。主要研究方向为飞机液压,电液智能控制,外骨骼机器人。E-mail:ouyangxp@zju.edu.cn
  • 基金资助:
    教育部联合基金(8091B042201); 国家自然科学基金(52305077,U2141209)资助项目。

Design and Control of a Semi-active Electro-hydraulic Lower Limb Exoskeleton Robot for Load-bearing Augmentation

BAO Yingwei1,2, YANG Bo1,2, SUN Maowen1,2, WANG Zezheng1,2, FANG Lixiang1,2, OUYANG Xiaoping1,2   

  1. 1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310058;
    2. State Key Laboratory of Fluid Power Components and Mechatronic Systems, Zhejiang University, Hangzhou 310027
  • Received:2024-11-03 Revised:2025-05-10 Published:2025-09-28

摘要: 负重行走是工业搬运和消防救援等领域的重要需求,但长期负重可能对人体造成不可逆的损伤。提升负重能力的辅助设备一直是研究热点,下肢外骨骼作为一种有效的解决方案,受到广泛关注。面向大负重下的行走运动,研制了一种基于半主动电液驱动的下肢助力外骨骼机器人。在设计上,该外骨骼根据躯干和大腿之间的角速度特征以及膝关节的力矩特征,采用新颖的半主动电液关节方案,实现了矢状面内负载的有效传导。建立了关节的运动学和动力学模型,针对运动过程的负载扰动,将二级倒立摆模型和状态机策略结合,实现了阻尼的动态匹配控制:在站立阶段,根据加速度特征,调节关节阻尼以传递步行过程中动态变化的载荷;在摆动阶段,半主动关节保持反驱特性确保腿的自由摆动。实验测试验证了半主动关节具备广泛可调的液压阻尼系数特性和良好的反驱特性,确保了外骨骼在站立相的阻尼调节和摆动相的被动跟随控制。外骨骼穿戴测试结果表明,在不同负重工况下,所研制的半主动电液驱动外骨骼机器人都能实现高效的负重传导和较小的背部交互力。

关键词: 下肢外骨骼, 半主动关节, 负重增强, 地面传导力, 背部交互力

Abstract: Load-bearing walking is an important requirement in fields such as industrial handling and fire rescue, but long-term load-bearing may cause irreversible damage to the human body. Assistive devices designed to improve load-bearing capacity have become a research hotspot, with lower limb exoskeletons attracting widespread attention as an effective solution. A semi-active electro-hydraulic driven lower limb exoskeleton robot is developed for load-bearing augmentation. In structural design, a novel semi-active electro-hydraulic joint is adopted to transfer the back load in the sagittal plane based on the angular velocity characteristic between the trunk and the thigh, as well as the torque characteristics of the knee joint. This research presents the kinematic and dynamic model of the joints. For the load disturbance in the motion process, the combination of double inverted pendulum model and state machine strategy is adopted to match the dynamic damping: During the stance phase, joint damping is adjusted according to acceleration characteristics to transfer dynamically varying loads. In the swing phase, the semi-active joints maintain backdrivability to ensure the free swing of the leg. Experimental tests verify that the semi-active joints exhibit a wide range of adjustable hydraulic damping coefficients and good backdrivability, ensuring effective damping adjustment during the stance phase and passive follow-up control during the swing phase. Furthermore, exoskeleton experiments indicate that, under different load conditions, the proposed semi-active hydraulic-electric driven exoskeleton achieves efficient load transfer and provides low back interaction force.

Key words: lower limb exoskeleton, semi-active joint, load-bearing augmentation, ground transferred force, back interaction force

中图分类号: