[1] RICHMOND V,RAYSON M,WILKINSON D,et al.Physical demands of firefighter search and rescue in ambient environmental conditions[J]. Ergonomics,2008,51(7):1023-1031. [2] ORR R,COYLE J,JOHNSTON V,et al. Self-reported load carriage injuries of military soldiers[J]. International Journal of Injury Control and Safety Promotion,2017,24(2):189-197. [3] STURDY J,SESSOMS P,RIZEQ H,et al. Walking slope and heavy backpacks affect peak and impulsive lumbar joint contact forces[J]. Journal of Biomechanical Engineering,2025,147(1):1-13. [4] BROWN T,DONOVAN M,HASSELQUIST L,et al.Body borne loads impact walk-to-run and running biomechanics[J]. Gait&Posture,2014,40(1):237-242. [5] YANG L,ZHANG J,XU Y,et al. Energy performance analysis of a suspended backpack with an optimally controlled variable damper for human load carriage[J].Mechanism and Machine Theory,2020,146:1-18. [6] LI T,LI Q. A systematic review on load carriage assistive devices:Mechanism design and performance evaluation[J].Mechanism and Machine Theory,2023,180:1-21. [7] LIANG J,ZHANG Q,LIU Y,et al. A review of the design of load-carrying exoskeletons[J]. Science China-Technological Sciences,2022,65(9):2051-2067. [8] 黄思翰,王柏村,张美迪,等.面向人本智造的新一代操作工:参考架构、使能技术与典型场景[J].机械工程学报,2022,58(18):251-264.HUANG Sihan,WANG Baicun,ZHANG Meidi,et al.Towards human-centric smart manufacturing:Framework,enabling technologies and typical scenarios of operator 4.0[J]. Journal of Mechanical Engineering,2022,58(18):251-264. [9] SUN M,OUYANG X,MATTILA J,et al. Lightweight electrohydrostatic actuator drive solution for exoskeleton robots[J]. IEEE/ASME Transactions on Mechatronics,2022,27(6):4631-4642. [10] HYUN D,PARK H,HA T,et al. Biomechanical design of an agile,electricity-powered lower-limb exoskeleton for weight-bearing assistance[J]. Robotics and Autonomous Systems,2017,95:181-195. [11] LEI T,SEO J,LIANG K,et al. Lightweight active soft back exosuit for construction workers in lifting tasks[J].Journal of Construction Engineering and Management,2024,150(7):1-15. [12] KANG O,YUN J,SEO S,et al. A novel design of unpowered exoskeleton for loaded walking using only hip abduction torque[J]. IEEE/ASME Transactions on Mechatronics,2024,29(4):2534-2544. [13] WANG D,LEE K,JI J,et al. A passive gait-based weight-support lower extremity exoskeleton with compliant joints[J]. IEEE Transactions on Robotics,2016,32(4):933-942. [14] ZHAN Y, ZHANG W, HOU Z, et al.Non-anthropomorphic passive load-bearing lower-limb exoskeleton with a reconfigurable mechanism based on mechanical intelligence[J]. Mechanism and Machine Theory,2024,201:1-23. [15] PREETHICHANDRA D,PIYATHILAKA L,SUL J,et al. Passive and active exoskeleton solutions:Sensors,actuators,applications,and recent trends[J]. Sensors,2024,24(21):1-43. [16] SHIAO Y,GADDE P. Investigation of hysteresis effect in torque performance for a magnetorheological brake in adaptive knee orthosis[J]. Actuators,2021,10(10):1-13. [17] ZHANG W,ZHAN Y,JU W,et al. A novel quasi-passive non-anthropomorphic lower limb exoskeleton for load-bearing[J]. IEEE Robotics and Automation Letters,2024,9(11):9891-9898. [18] DIJK W,WIJDEVEN T,HOLSCHER M,et al. Exobuddy-A non-anthropomorphic quasi-passive exoskeleton for load carrying assistance[C]//7th IEEE International Conference on Biomedical Robotics and Biomechatronics.IEEE,2018:336-341. [19] FAN W,DAI Z,ZHANG B,et al. HyExo:A novel quasi-passive hydraulic exoskeleton for load-carrying augmentation[J]. IEEE/ASME Transactions on Mechatronics,2025,30(1):144-155. [20] SONG Z,ZHANG W,CHEN D,et al. A bianisotropic damper based on magnetorheological fluid for a quasi-passive load-bearing exoskeleton[J]. IEEE/ASME Transactions on Mechatronics,2024,30(3):2316-2326. [21] SONG J,ZHU A,TU Y,et al. Magnetorheological damper with variable displacement permanent magnet for assisting the transfer of load in lower limb exoskeleton[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2024,32:43-52. [22] WANG T,ZHU Y,ZHENG T,et al. PALExo:A parallel actuated lower limb exoskeleton for high-load carrying[J].IEEE Access,2020,8:67250-67262. [23] CAO X,YU M,ZHOU J,et al. Modeling and control of helicopter flight control system with a controllable semi-rotary fluid viscous damper[J]. Alexandria Engineering Journal,2022,61(12):12725-12738. [24] ZHAO C, LIU Z, ZHENG C, et al. Research on mechanical leg structure design and control system of lower limb exoskeleton rehabilitation robot based on magnetorheological variable stiffness and damping actuator[J]. Actuators,2024,13(4):1-24. [25] 车精明.面向被动负重外骨骼的变刚度关节设计方法与性能分析[D].武汉:华中科技大学,2021.CHE Jingming. Design method and performance analysis of variable stiffness joints for passive load-carrying exoskeletons[D]. Wuhan:Huazhong University of Science and Technology,2021. [26] WALSH C,ENDO K,HERR H. A quasi-passive leg exoskeleton for load-carrying augmentation[J].International Journal of Humanoid Robotics,2007,4(3):487-506. [27] 胡冰山,程科,陆盛,等.变刚度储能助力髋外骨骼设计及助力效果仿真[J].系统仿真学报,2022,34(5):1090-1100.HU Bingshan,CHENG Ke,LU Sheng,et al. Design of variable stiffness energy storage walking assist hip exoskeleton and simulation of assistance effect[J]. Journal of System Simulation,2022,34(5):1090-1100. [28] YUN J, KANG O, JOE H. Design of a payload adjustment device for an unpowered lower-limb exoskeleton[J]. Sensors,2021,21(12):1-11. [29] CGA Normative Gait Database[EB/OL].[2024-04-16] http://ww.clinicalgaitanalysis.com/data/index.html. [30] ZHANG Y,KIEMEL T,JEKA J. The influence of sensory information on two-component coordination during quiet stance[J]. Gait&Posture,2007,26(2):263-271. [31] SCHERPEREEL K,MOLINARO D,INAN O,et al. A human lower-limb biomechanics and wearable sensors dataset during cyclic and non-cyclic activities[J].Scientific Data,2023,10(1):924-935. [32] 欧阳小平,杨波,房理想,等.一种机器人关节液压半主动阻尼缸:中国,202410528888.X[P]. 2024-07-16.OUYANG Xiaoping,YANG Bo,FANG Lixiang,et al.Hydraulic semi-active damping cylinder for robot joints:China,202410528888.X[P]. 2024-07-16. [33] YANG Z,GU W,ZHANG J,et al. Force control theory and method of human load carrying exoskeleton suit[M].Berlin,Heidelberg:Springer,2017. [34] 孙茂文,欧阳小平,王泽正,等.泵控外骨骼机器人行走协同控制策略[J].机械工程学报,2022,58(18):159-169.SUN Maowen,OUYANG Xiaoping,WANG Zezheng,et al. Cooperative control strategy of pump-controlled exoskeleton robot walking[J]. Journal of Mechanical Engineering,2022,58(18):159-169. [35] 孙汝强,权淑萍,郭伟,等.一种新型疲劳试验机:中国,202322906953.1[P]. 2024-07-23.SUN Ruqiang,QUAN Shuping,GUO Wei,et al. A novel fatigue testing machine:China, 202322906953.1[P].2024-07-23. [36] HAO M,ZHANG J,CHEN K,et al. Supernumerary robotic limbs to assist human walking with load carriage[J]. Journal of Mechanisms and Robotics-Transactions of the ASME,2020,12(6):1-9. [37] TRAN H,CHENG H,RUI H,et al. Evaluation of a fuzzy-based impedance control strategy on a powered lower exoskeleton[J]. International Journal of Social Robotics,2016,8:103-123. |