• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 101-111.doi: 10.3901/JME.2025.09.101

• 特邀专栏:高性能制造 • 上一篇    

扫码分享

扫描速度对激光粉末床熔融NiTi合金耐腐蚀性能的影响

于征磊1, 高德龙1, 徐泽洲1, 郭云婷2, 牛士超1, 韩志武1, 张志辉1, 任露泉1   

  1. 1. 吉林大学工程仿生教育部重点实验室 长春 130022;
    2. 东北林业大学机电工程学院 哈尔滨 150042
  • 收稿日期:2024-05-14 修回日期:2024-11-08 发布日期:2025-06-12
  • 通讯作者: 韩志武,男,1969年出生,博士,教授,博士研究生导师。主要研究方向为机械仿生原理与功能表面仿生。E-mail:zwhan@jlu.edu.cn E-mail:zwhan@jlu.edu.cn
  • 作者简介:于征磊,男,1984年出生,博士,教授,博士研究生导师。主要研究方向为增材制造智能材料。E-mail:zlyu@jlu.edu.cn;牛士超,男,1986年出生,博士,教授,博士研究生导师。主要研究方向为仿生多功能表面及其微纳制造技术。E-mail:niushichao@jlu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB4600500)、国家自然科学基金青年基金(52375289,52205310)、中国博士后科学基金(2023M741341,2023TQ0129)和国家资助博士后研究人员计划B档(GZB20230257)资助项目。

Effect of Scanning Speed on Corrosion Resistance of NiTi Alloy Melted by Laser Powder Bed

YU Zhenglei1, GAO Denglong1, XU Zezhou1, GUO Yunting2, NIU Shichao1, HAN Zhiwu1, ZHANG Zhihui1, REN Luquan1   

  1. 1. Key Laboratory of Engineering Bionics, Ministry of Education, Jilin University, Changchun 130022;
    2. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150042
  • Received:2024-05-14 Revised:2024-11-08 Published:2025-06-12

摘要: 激光粉末床熔融(Laser powder bed fusion,LPBF)技术所制备的NiTi合金以及高自由度的成型、形状记忆效应和超弹性等多功能性在生物医疗领域获得了广泛的关注,具有巨大的应用潜力。然而,目前的研究多针对于其多孔结构设计降低弹性模量以及过程参数控制改善力学性能与功能特性等方面,对于其表面抗腐蚀能力的关注较少。与此同时,模拟体液中的耐腐蚀性能对于其医疗应用起着至关重要的作用。因此,在本研究中,重点研究激光加工过程中扫描速度对于耐腐蚀性的影响规律,分别选取扫描速度100 mm/s、400 mm/s、700 mm/s、1 000 mm/s, 1 300 mm/s和1 600 mm/s的六组样品进行分析,通过XRD、OM、SEM、EDS以及DSC等手段对不同样品的微观组织结构、致密度以及相组成等方面进行了详细的分析。采用电化学测试手段与浸泡实验分别对样品的短期与长期耐腐蚀性进行评价。结果表明:扫描速度对于样品耐蚀性具有重要影响,其耐腐蚀性能的变化与样品中B19’马氏体相的体积分数、样品表面气孔以及未熔合孔等缺陷密切相关。其中700 mm/s扫描速度下的样品的耐腐蚀性最优,腐蚀电流密度为(2.6±0.6)×10−7A/cm2。并且长期浸泡实验结果证明了低扫描速度下产生的球形气孔以及高扫描速度下产生的未熔合孔等部位优先被腐蚀破坏。而表面缺陷较少的扫描速度700 mm/s与1 000 mm/s样品,700 mm/s样品表面腐蚀产物更少,更不易被腐蚀破坏。本研究中扫描速度对于耐腐蚀性的影响规律,对于开发抗腐蚀性生物医用LPBF-NiTi合金提供了一定的指导作用。

关键词: 激光粉末床熔融, NiTi合金, 扫描速度, 耐腐蚀性, 模拟体液

Abstract: NiTi alloys produced using laser powder bed fusion (LPBF) technology have garnered significant attention in the biomedical field due to their high degree of freedom forming, shape memory effect, and superelasticity, showing great potential for various applications. However, current research primarily focuses on designing porous structures to reduce elastic modulus, optimizing process parameters to enhance mechanical properties and functional characteristics, while neglecting surface corrosion resistance. Yet, corrosion resistance in simulated body fluids is crucial for medical applications. This study primarily investigates the impact of scanning speed on corrosion resistance during laser processing. Six groups of samples with varying scanning speeds (100 mm/s, 400 mm/s, 700 mm/s, 1 000 mm/s, 1 300 mm/s and 1 600 mm/s) are analysed. The microstructure, density, and phase composition of the samples are meticulously examined using XRD, OM, SEM, EDS and DSC. Furthermore, the short and long-term corrosion resistance of the samples is assessed through electrochemical testing and immersion testing. The study demonstrates that the scanning speed significantly impacts the corrosion resistance of the sample. The corrosion resistance is closely linked to factors such as the volume fraction of the B19' martensitic phase, pores on the sample surface, and unfused pores. Notably, the sample scanned at 700 mm/s exhibits the highest corrosion resistance, with a corrosion current density of (2.6±0.6)×10−7A/cm2. Long-term immersion experiments reveal that spherical pores generated at low scanning speeds and unfused pores at high scanning speeds are more susceptible to corrosion. Conversely, samples scanned at 700 mm/s and 1 000 mm/s display fewer surface defects, with the surface corrosion products of the 700 mm/s samples showing greater resistance to corrosion damage. This research sheds light on the impact of scanning speed on corrosion resistance, offering valuable insights for the advancement of corrosion-resistant biomedical LPBF-NiTi alloy.

Key words: laser powder bed fusion, NiTi alloy, scanning speed, corrosion resistance, simulated body fluids

中图分类号: