机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 46-77.doi: 10.3901/JME.2025.09.046
• 特邀专栏:高性能制造 • 上一篇
王军1,2, 景延延1,2, 杜鑫豪1,2, 郑李娟1,2, 王成勇1,2, 陈平3
收稿日期:
2024-05-16
修回日期:
2024-10-18
发布日期:
2025-06-12
通讯作者:
郑李娟,女,1987年出生,博士,教授,博士研究生导师。主要研究方向为跨尺度机械及特种加工理论、技术与装备。E-mail:zhenglijuan@gdut.edu.cn
E-mail:zhenglijuan@gdut.edu.cn
作者简介:
王军,男,1961年出生,博士,博士研究生导师。主要研究方向为跨尺度磨料射流、高能束及多能场复合、精密/超精密加工的相关理论、技术与装备。E-mail:j.wang@gdut.edu.cn
基金资助:
WANG Jun1,2, JING Yanyan1,2, DU Xinhao1,2, ZHENG Lijuan1,2, WANG Chengyong1,2, CHEN Ping3
Received:
2024-05-16
Revised:
2024-10-18
Published:
2025-06-12
摘要: 磨料水射流作为一种“冷柔”加工技术得到越来越广泛的应用,尤其在热敏及新型材料加工领域有很好的应用前景,是解决难加工材料零件制造难题最有效的技术之一。自磨料水射流加工技术问世以来,全球学者开展了大量的研究工作,对高压和超高压磨料水射流技术背后的科学问题取得了较好的理解,也使得磨料水射流加工成为比较成熟的先进制造技术。为了促进以后的研究和研发工作,分析、讨论和总结了磨料水射流加工领域前期的研究工作,涵盖高压水射流和磨料水射流的形成原理以及流场和冲击特性、射流冲击区的流体力学特性和能量传递规律、冲蚀导致的材料微观去除机理和宏观切口形成机理,以及新技术和新工艺,从理论、技术和工艺层面为后期研究提供支持。最后,对磨料水射流技术未来的发展以及研究方向提出作者的见解。
中图分类号:
王军, 景延延, 杜鑫豪, 郑李娟, 王成勇, 陈平. 磨料水射流加工技术研究现状及展望[J]. 机械工程学报, 2025, 61(9): 46-77.
WANG Jun, JING Yanyan, DU Xinhao, ZHENG Lijuan, WANG Chengyong, CHEN Ping. Abrasive Waterjet Machining — State of the Art and Future Perspectives[J]. Journal of Mechanical Engineering, 2025, 61(9): 46-77.
[1] 刘巧沐,黄顺洲,何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程,2019,47(2):1-10. LIU Qiaomu,HUANG Shunzhou,HE Aijie. Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering,2019,47(2):1-10. [2] FAN Shangwu,ZHANG Litong,CHENG Laifei,et al. Effect of braking pressure and braking speed on the tribological properties of C/SiC aircraft brake materials[J]. Composites Science and Technology,2010,70(6):959-965. [3] SILVEYRA J M,FERRARA E,HUBER D L,et al. Soft magnetic materials for a sustainable and electrified world[J]. Science,2018,362(26):418-418. [4] RAYAT M S,GRILL S S,RUPINDER S,et al. Fabrication and machining of ceramic composites-A review on current scenario[J]. Materials and Manufacturing Processes,2017,32(13):1451-1474. [5] LIU Yanchi,WU Chenwu,HUANG Yihui,et al. Interlaminar damage of carbon fiber reinforced polymer composite laminate under continuous wave laser irradiation[J]. Optics and Lasers in Engineering,2017,88:91-101. [6] HE Wenbin,HE Shaotai,DU Jinguang,et al. Fiber orientations effect on process performance for wire cut electrical discharge machining (WEDM) of 2D C/SiC composite[J]. International Journal of Advanced Manufacturing Technology,2019,102 (1):507-518. [7] YUE Xiaoming,LI Qi,YANG Xiaodong. Influence of thermal stress on material removal of Cf/SiC composite in EDM[J]. Ceramics International,2020,46(6):7998-8009. [8] WANG Jun. Abrasive waterjet machining of engineering materials[M]. Uetikon-Zuerich:Trans Tech Publications,2003. [9] 宋拥政,温效康,梁志强. 磨料水射流切割与激光切割,等离子切割的比较分析[J]. 中国机械工程,1994,5(5):8-10. SONG Yongzheng,WEN Xiaokang,LIANG Zhiqiang. Comparative analysis of abrasive water jet cutting,laser cutting and plasma cutting[J]. China Mechanical Engineering,1994,5(5):8-10. [10] HASHISH M. Comparative evaluation of abrasive liquid jet machining systems[J]. Journal of Engineering for Industry-Transactions of the ASME,1993,115(1):44-50. [11] 林志立,卢钱杰,易新华,等. 高压水射流技术的发展与应用[J]. 中国科技产业,2021(5):46-47. LIN Zhili,LU Qianjie,YI Xinhua,et al. Development and application of high pressure water jet technology[J]. Chinese Science and Technology Industry,2021(5):46-47. [12] KOVACEVIC R,HASHISH M,MOHAN R,et al. State of the art of research and development in abrasive waterjet machining[J]. Journal of Manufacturing Science and Engineering,1997,119(4):776-785. [13] SUSUZLU T,HOOGSTRATE A M,KARPUSCHEWSKI B. Initial research on the ultra-high-pressure waterjet up to 700MPa[J]. Journal of Materials Processing Technology,2004,149(1-3):30-36. [14] BRANDT S,LOUIS H. Profiling with 400 MPa fine-beam abrasive water jet[C]//Proceedings of the 10th American Waterjet Conference. Hannover:Institute of Material Science,1999:381-390. [15] ELDOMIATY A A,SHABARA M A,RAHMAN A A,et al. On the modelling of abrasive waterjet cutting[J]. International Journal of Advanced Manufacturing Technology,1996,12(4):255-265. [16] FOLKES J. Waterjet-An innovative tool for manufacturing[J]. Journal of Materials Processing Tech,2009,209(20):6181-6189. [17] DIXIT A,DAVE V,BAID M R. Water jet machining:an advance manufacturing process[J]. International Journal of Engineering Research and General Science,2015,3(2):288-292. [18] PATEL D,THAKKAR J,BHATT T,et al. Review on current investigation and enlargement of abrasive water jet machining[J]. International Journal for Technological Research in Engineering,2014,3(3):2347-4718. [19] 马超,雷玉勇,邱刚. 水射流技术在集成电路制造工艺中的应用[J]. 半导体技术,2007,32(10):854-858. MA Chao,LEI Yuyong,QIU Gang. Application of water jet technology in integrated circuit manufacturing process[J]. Semiconductor Technology,2007,32(10):854-858. [20] 关新宇. 打捞库尔斯克号核潜艇[J]. 建设机械技术与管理,2005,(01):37-39. GUAN Xinyu. Salvage the Kursk nuclear submarine[J]. Construction Machinery Technology and Management,2005,(01):37-39. [21] ALI Y M,WANG Jun. Impact abrasive machining. chapter 9 in machining with abrasives[M]. New York:Springer Science + Business Media,2011. [22] HASHISH M. A model for abrasive waterjet machining[J]. Journal of Engineering Materials and Technology,1989,111(2):154-162. [23] AROLA D,RAMULU M. A study of kerf characteristics in abrasive waterjet machining of graphite/epoxy composite[J]. Journal of Engineering Materials and Technology,1996,118(2):256-265. [24] AROLA D,RAMULU M. Material removal in abrasive waterjet machining of metals Surface integrity and texture[J]. Wear,1997,210(1-2):50-58. [25] HASHISH M. Characteristics of surfaces machined with abrasive waterjets[J]. Transactions ASME Journal of Engineering Materials and Technology,1991,113(3):354-362. [26] WANG Jun. Techniques for enhancing the cutting performance of abrasive waterjets[J]. Key Engineering Materials,2004,257-258:521-526. [27] CHEN F L,WANG Jun,LEMMA E,et al. Striation formation mechanisms on the jet cutting surface[J]. Journal of Materials Processing Technology,2003,141(2):213-218. [28] WANG Jun,GUO Dongming. The cutting performance in multipass abrasive waterjet machining of industrial ceramics[J]. Journal of Materials Processing Technology,2003,133(3):371-377. [29] WANG Jun,KURIYAGAWA T,HUANG Chuanzhen. An experimental study to enhance the cutting performance in abrasive waterjet machining[J]. Machining Science and Technology,2003,7(2):191-207. [30] WANG Jun,LIU Hua,HUANG Chuanzhen. Modelling the depth of jet penetration in abrasive waterjet contouring of alumina ceramics[J]. Materials Science Forum,2004,471-472:462-468. [31] LUO Wusheng,WANG Chengyong,WANG Jun,et al. The development of micro abrasive waterjet machining technology[J]. Advanced Materials Research,2011,188:733-738. [32] HASHISH M. Pressure effects in abrasive waterjet machining[J]. Journal of Engineering Materials and Technology,1989,111(3):221-228. [33] CHUNG Y,GESKIN E S,SINGH P J. Prediction of the geometry of the kerf created in the course of abrasive waterjet machining of ductile materials[J]. Jet Cutting Technology,1992,15:525-541. [34] HASHISH M. A modeling study of metal cutting with abrasive waterjets[J]. Journal of Engineering Materials and Technology,1984,106(1):88-100. [35] WANG Jun,WONG W C K. A study of abrasive waterjet cutting of metallic coated sheet steels[J]. International Journal of Machine Tools and Manufacture,1999,39(6):855-870. [36] WANG Jun. Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics[J]. International Journal of Mechanical Sciences,2007,49(3):306-316. [37] WANG Jun. A new model for predicting the depth of cut in abrasive waterjet contouring of alumina ceramics[J]. Journal of Materials Processing Technology,2009,209(5):2314-2320. [38] WANG Jun. A machinability study of polymer matrix composites using abrasive waterjet cutting technology[J]. Journal of Materials Processing Technology,1999,94(1):30-35. [39] WANG Jun. Abrasive waterjet machining of polymer matrix composites cutting performance,erosive process and predictive models[J]. International Journal of Advanced Manufacturing Technology,1999,15(10):757-768. [40] WANG Jun,GUO Dongming. A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites[J]. Journal of Materials Processing Technology,2002,121(2-3):390-394. [41] ZHANG Shijin,WU Yuqiang,CHEN Deshu. Hole- drilling using abrasive water jet in titanium[J]. International Journal of Machining and Machinability of Materials,2011,9(1):47-65. [42] THONGKAEW K,WANG Jun,LI Weiyi. An investigation of the hole machining processes on woven carbon-fiber reinforced polymers (CFRPs) using abrasive waterjets[J]. Machining Science and Technology,2019,23(1-3):19-38. [43] WANG Jun,LIU Hua. Profile cutting on alumina ceramics by abrasive waterjet. Part 1:experimental investigation[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2006,220(5):703-714. [44] WANG Jun,LIU Hua. Profile cutting on alumina ceramics by abrasive waterjet. Part 2:cutting performance models[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2006,220(5):715-725. [45] SHANMUGAM D K,WANG Jun,LIU Hua. Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique[J]. International Journal of Machine Tools and Manufacture,2008,48(14):1527-1534. [46] KARTAL F. A review of the current state of abrasive water jet turning machining method[J]. The International Journal of Advanced Manufacturing Technology,2017,88(1):495-505. [47] LI Weiyi,WANG Jun,ALI Y M. An experimental study of radial-mode abrasive waterjet turning of steels[J]. Materials Science Forum,2012,697-698:166-170. [48] LIU Dun,HUANG Chuanzhen,WANG Jun,et al. Modeling and optimization of operating parameters for abrasive water jet turning alumina ceramics using response surface methodology combined with Box-Behnken design[J]. Ceramics International,2014,40(6):7899-7908. [49] LI Weiyi,ZHU Hongtao,WANG Jun,et al. Radial-mode abrasive waterjet turning of short carbon-fiber-reinforced plastics[J]. Machining Science and Technology,2016,20(2):231-248. [50] LI Weiyi,ZHU Hongtao,WANG Jun,et al. An investigation into the radial-mode abrasive waterjet turning process on high tensile steels[J]. International Journal of Mechanical Sciences,2013,77(4):365-376. [51] LIU Dun,HUANG Chuanzhen,WANG Jun,et al. Study on the effect of standoff distance on processing performance of alumina ceramics in two modes of abrasive waterjet turning patterns[J]. Advanced Materials Research,2013,797:21-26. [52] MANU R,BABU N R. Influence of jet impact angle on part geometry in abrasive waterjet turning of aluminium alloys[J]. International Journal of Machining and Machinability of Materials,2008,3(1-2):120-132. [53] 卫排锋. 磨料水射流车削加工单晶硅的实验研究[D]. 成都:西华大学,2011. WEI Paifeng. Experimental study on grinding waterjet turning single crystal silicon[D]. Chengdu:Xihua University,2011. [54] FENG Yanxia,HUANG Chuanzhen,WANG Jun,et al. An experimental study on milling Al2O3 ceramics with abrasive waterjet[J]. Key Engineering Materials,2007,339:500-504. [55] DADKHAHIPOUR K,NGUYEN T,WANG Jun. Mechanisms of channel formation on glasses by abrasive waterjet milling[J]. Wear,2012,292-293:1-10. [56] NGUYEN T,WANG Jun,LI Weiyi. Process models for controlled-depth abrasive waterjet milling of amorphous glasses[J]. International Journal of Advanced Manufacturing Technology,2015,77(5-8):1177-1189. [57] CENAC F,ZITOUNE R,COLLOMBET F,et al. Abrasive waterjet milling of aeronautic aluminum 2024- T3[J]. Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications,2015,229(1):29-37. [58] 杜航,熊杰,陈炜,等. 磨料水射流铣削钛合金深度与表面粗糙度研究[J]. 机械科学与技术,2023,42(7):1063-1069. DU Hang,XIONG Jie,CHEN Wei,et al. Study on depth and surface roughness of abrasive water jet milling titanium alloy[J]. Mechanical Science and Technology,2023,42(7):1063-1069. [59] 赵漫漫,黄涛涛,何雪明. 磨料水射流铣削加工表面质量的研究[J]. 制造业自动化,2018,40(8):75-78. ZHAO Manman,HUANG Taotao,HE Xueming. Study on the surface quality of abrasive water jet milling[J]. Automation in Manufacturing Industry,2018,40 (8):75-78. [60] 尹东杨,陈晓川,鲍劲松. 基于磨料水射流的三维编织复合材料铣削技术研究[J]. 机械工程学报,2021,57(5):273-280. YIN Dongyang,CHEN Xiaochuan,BAO Jinsong. Research on the milling technology of 3D braided composite materials based on abrasive water jet[J]. Journal of Mechanical Engineering,2021,57(5):273-280. [61] 林琳,何周伟,胡涛,等. 磨料水射流抛光技术进展综述[J]. 液压与气动,2022,46(1):74-91. LIN Lin,HE Zhouwei,HU Tao,et al. Review on the development of abrasive water jet polishing technology[J]. Chinese Hydraulics and Pneumatics,2022,46(1):74-91. [62] LIU Hua,WANG Jun,HUANG Chuanzhen. Abrasive waterjet as a flexible polishing tool[J]. International Journal of Materials and Product Technology,2008,31(1):2-13. [63] 方慧,郭培基,余景池. 液体喷射抛光材料去除机理的研究[J]. 光学技术,2004,30(2):248-250. FANG Hui,GUO Peiji,YU Jingchi. Study on the removal mechanism of liquid jet-polished materials[J]. Optical Technology,2004,30(2):248-250. [64] 张文超,武美萍. 磨料水射流抛光45钢工艺参数优化[J]. 机械设计与研究,2017,33(6):113-117. ZHANG Wenchao,WU Meiping. Optimization of process parameters of abrasive water jet polishing 45 steel[J]. Mechanical Design and Research,2017,33 (6):113-117. [65] WANG Chunjin,CHEUNG Chifai,HO Laiting,et al. An investigation of effect of stand-off distance on the material removal characteristics and surface generation in fluid jet polishing[J]. Nanomanufacturing and Metrology,2020,3(9):112-122. [66] GUO Rui,ZHOU Cunlong,YUAN Shengnan. Influence of abrasive water jet parameters on steel surface[J]. Journal of the Minerals,Metals and Materials Society,2020,72(12):4273-4280. [67] 陈正雄,武美萍,强争荣. 磨料水射流抛光生物陶瓷工艺参数优化[J]. 机械设计与研究,2017,33(2):129-132. CHEN Zhengxiong,WU Meiping,QIANG Zhengrong. Optimization of process parameters for abrasive water jet polishing[J]. Mechanical Design and Research,2017,33(2):129-132. [68] LV Zhe,HUANG Chuanzhen,WANG Jun,et al. An experimental research on abrasive water jet polishing of the hard brittle ceramics[J]. Advanced Materials Research,2013,797:15-20. [69] ZHU Hongtao,HUANG Chuanzhen,WANG Jun,et al. Experimental study on abrasive water jet polishing for hard-brittle materials[J]. International Journal of Machine Tools and Manufacture,2009,49(7-8):569-578. [70] XU Shunli,WANG Jun. A study of abrasive waterjet cutting of alumina ceramics with controlled nozzle oscillation[J]. International Journal of Advanced Manufacturing Technology,2005,27(7):693-702. [71] WANG Jun. A focused review on enhancing the abrasive waterjet cutting performance by using controlled nozzle oscillation[J]. Key Engineering Materials,2009,404:33-44. [72] WANG Jun. The effect of jet impinging angle on the cutting performance in AWJ machining of alumina ceramics[J]. Key Engineering Materials,2003,238-239:117-124. [73] 李宗原. 聚合物基复合材料磨料水射流加工缺陷成因及消减策略[D]. 大连:大连理工大学,2019. LI Zongyuan. Causes and reduction strategies of abrasive polymer matrix composites[D]. Dalian:Dalian University of Technology,2019. [74] 张曙光. 基于倾角补偿的磨料水射流曲线切割技术研究[D]. 济南:山东大学,2010. ZHANG Shuguang. Research on the curve cutting technology of abrasive water jet based on inclination compensation[D]. Jinan:Shandong University,2010. [75] 高航,袁业民,陈建锋,等. 航空发动机整体叶盘磨料水射流开坯加工技术研究进展[J]. 航空学报,2020,41(2):6-27. GAO Hang,YUAN Yemin,CHEN Jianfeng,et al. Progress of water jet billet processing technology[J]. Aeronautical Journal,2020,41(2):6-27. [76] 黎明河. 磨料水射流加工整体式涡轮叶盘的研究[D]. 济南:山东大学,2020. LI Minghe. Research on abrasive water jet machining[D]. Jinan:Shandong University,2020. [77] 李增强,赵佩杰,宋雨轩,等. 微磨料水射流加工技术研究现状[J]. 纳米技术与精密工程,2016,14(2):134-144. LI Zengqiang,ZHAO Peijie,SONG Yuxuan,et al. Research status of microabrasive water jet processing technology[J]. Nanotechnology and Precision Engineering,2016,14 (2):134-144. [78] MILLER D S. Micromachining with abrasive waterjets[J]. Journal of Materials Processing Technology,2004,149(1-3):37-42. [79] MILLER D S. Developments in abrasive water jets for micromachining[C]//Proceedings of the 2003 WJTA American Waterjet Conference. Houston:Water Jet Technology Association,2003:429-443. [80] MILLER D S. New abrasive waterjet systems to compete with lasers[C]//Proceedings of the 2005 WJTA American Water Jet Conference. Houston:Water Jet Technology Association,2005:1-11. [81] 王军,黄传真,朱洪涛,等. 精密微细磨料水射流储能式脉冲微量供料系统,中国:CN100486772C[P]. 2009-05-13. WANG Jun,HUANG Chuanzhen,ZHU Hongtao,et al. Precision fine abrasive waterjet energy storage pulse microfeed system,China:CN100486772C[P]. 2009- 05-13. [82] FAN Jingming,FAN Changming,WANG Jun. Flow dynamic simulation of micro abrasive water jet[J]. Solid State Phenomena,2011,175:171-176. [83] NGUYEN T,SHANMUGAM D K,WANG Jun. Effect of liquid properties on the stability of an abrasive waterjet[J]. International Journal of Machine Tools and Manufacture,2008,48(10):1138-1147 [84] LIU H T. Waterjet technology for machining fine features pertaining to micro-machining[J]. Journal of Manufacturing Processes,2010,12(1):8-18. [85] WANG Jun,NGUYEN T,PANG Kinglun. Mechanisms of microhole formation on glasses by an abrasive slurry jet[J]. Journal of Applied Physics,2009,105(4):1-4. [86] NOURAEI H,KOWSARI K,SPELT J K,et al. Surface evolution models for abrasive slurry jet micro-machining of channels and holes in glass[J]. Wear,2014,309(1-2):65-73. [87] NGUYEN T,PANG Kinglun,WANG Jun. A preliminary study of the erosion process in micro-machining on glasses with a low pressure slurry jet[J]. Key Engineering Materials,2009,389:375-380. [88] HAGHBIN N,SPELT J K,PAPINI M. Abrasive water jet micromachining of channels in metals:Comparison between machining in air and submerged in water[J]. International Journal of Machine Tools and Manufacture,2015,88:108-117. [89] TSAI F C,CHANG Tingcheng,KUO Miaoyu,et al. The investigation of abrasive jet polishing on the linear micro- channels surface of SKD61 mold steel[J]. Advanced Materials Research,2013,652-654:1799-1804. [90] LIU Zengwen,HUANG Chuanzhen,WANG Jun,et al. Study on machining system of precision micro abrasive water jet and polish experiment[J]. Key Engineering Materials,2010,431/432:102-105. [91] SIORES E,WONG W C K,CHEN L,et al. Enhancing abrasive waterjet cutting of ceramics by head oscillation techniques[J]. CIRP Annals-Manufacturing Technology,1996,45(1):327-330. [92] LEMMA E,CHEN L,SIORES E,et al. Optimising the AWJ cutting process of ductile materials using nozzle oscillation technique[J]. International Journal of Machine Tools and Manufacture,2002,42(7):781-789. [93] LEMMA E,CHEN L,SIORES E,et al. Study of cutting fiber-reinforced composites by using abrasive waterjet with cutting head oscillation[J]. Composite Structures,2002,57(1-4):297-303. [94] HASHISH M. Effect of beam angle in abrasive waterjet machining[J]. Journal of Manufacturing Science and Engineering,1993,115(1):51-56. [95] LIU Zhuang,NOURAEI H,PAPINI M,et al. Abrasive enhanced electrochemical slurry jet micro-machining:Comparative experiments and synergistic effects[J]. Journal of Materials Processing Technology,2014,214(9):1886-1894. [96] LIU Zhuang,NOURAEI H,SPELT J K,et al. Electrochemical slurry jet micro-machining of tungsten carbide with a sodium chloride solution[J]. Precision Engineering,2015,40:189-198. [97] 代海. 磨料电化学射流加工过程数值模拟及实验研究[D]. 哈尔滨:哈尔滨工业大学,2013. DAI Hai. Numerical simulation and experimental study of the electrochemical abrasive jet processing process[D]. Harbin:Harbin Institute of Technology,2013. [98] ZHU Hongtao,HUANG Chuanzhen,WANG Jun,et al. Theoretical analysis on the machining mechanism in ultrasonic vibration abrasive waterjet[J]. Key Engineering Materials,2006,315-316:127-130. [99] LV Zhe,HUANG Chuanzhen,ZHU Hongtao,et al. A 3D simulation of the fluid field at the jet impinging zone in ultrasonic-assisted abrasive waterjet polishing[J]. International Journal of Advanced Manufacturing Technology,2016,87(9-12):1-13. [100] LV Zhe,HUANG Chuanzhen,ZHU Hongtao,et al. A research on ultrasonic-assisted abrasive waterjet polishing of hard-brittle materials[J]. International Journal of Advanced Manufacturing Technology,2015,78(5-8):1361-1369. [101] QI Huan,WEN Donghua,LU Congda,et al. Numerical and experimental study on ultrasonic vibration-assisted micro-channeling of glasses using an abrasive slurry jet[J]. International Journal of Mechanical Sciences,2016,110:94-10. [102] 张忠伟. 超声振动辅助微细磨料水射流切割技术研究[D]. 济南:山东大学,2014. ZHANG Zhongwei. Research on ultrasonic vibration assisted water jet cutting technology of fine abrasive[D]. Jinan:Shandong University,2014. [103] FOLDYNA J,SITEK L,ŠVEHLA B,et al. Utilization of ultrasound to enhance high-speed water jet effects[J]. Ultrasonics sonochemistry,2004,11(3-4):131-137. [104] BEAUCAMP A,KATSUURA T,TAKATA K. Process mechanism in ultrasonic cavitation assisted fluid jet polishing[J]. CIRP Annals-Manufacturing Technology,2018,67(1):361-364. [105] 侯荣国. 超声振动辅助磨料水射流脉动行为及其对加工机理影响机制研究[D]. 济南:山东大学,2015. HOU Rongguo. Study on the pulsation behavior of water jet and its influence mechanism on processing mechanism[D]. Jinan:Shandong University,2015. [106] 陈雪松,侯荣国,吕哲,等. 超声辅助磨料水射流加工机制及去除模型研究[J]. 机床与液压,2020,48(17):79-82. CHEN Xuesong,HOU Rongguo,LÜ Zhe,et al. Study on processing mechanism and removal model of abrasive abrasives[J]. Machine Tool and Hydraulic Pressure,2020,48(17):79-82. [107] 侯荣国,杨欢,蒋振伟,等. 磁场辅助微细磨料水射流加工系统的研制[J]. 机床与液压,2017,45(7):77-80. HOU Rongguo,YANG Huan,JIANG Zhenwei,et al. Development of magnetic field assisted fine abrasive waterjet machining system[J]. Machine Tool and Hydraulics,2017,45(7):77-80. [108] 王涛. 磁场辅助磨料水射流冲蚀硬脆材料去除机理研究[D]. 淄博:山东理工大学,2019. WANG Tao. Study on the removal mechanism of hard and brittle materials by magnetic field-assisted water jet erosion of abrasives[D]. Zibo:Shandong University of Technology,2019. [109] 杨欢. 磁场辅助微细磨料水射流拋光陶瓷材料关键技术研究[D]. 淄博:山东理工大学,2018. YANG Huan. Research on key technologies of magnetic field-assisted microabrasive waterjet optical ceramic materials[D]. Zibo:Shandong University of Technology,2018. [110] 李晓红,王建生,卢义玉,等. 脉冲磨料射流的基本理论与试验[J]. 中国安全科学学报,1999,9(z1):82-82. LI Xiaohong,WANG Jiansheng,LU Yiyu,et al. Basic theory and test of pulsed abrasive jet[J]. China Safety Science Journal,1999,9(z1):82-82. [111] 廖勇,李晓红,卢义玉,等. 自激振荡脉冲磨料水射流的研究[J]. 流体机械,2003,31(4):4-6. LIAO Yong,LI Xiaohong,LU Yiyu,et al. Study on self-excited oscillating pulsed abrasive water jet[J]. Fluid Machinery,2003,31(4):4-6. [112] 王晖. 自振脉冲磨料水射流安全切割实验及应用研究[D]. 北京:中国矿业大学,2012. WANG Hui. Experimental and application research on safe cutting of natural pulse abrasive water jet[D]. Beijing:China University of Mining and Technology,2012. [113] 徐凯. 淹没式自激振脉冲磨料水射流脉冲特性及切割试验研究[D]. 大连:大连海事大学,2015. XU Kai. Pulse characteristics and cutting test of submerged self-excited pulse abrasive water jet[D]. Dalian:Dalian Maritime University,2015. [114] 邓乾发,汪杨笑,吕冰海,等. 自激脉冲特性磨料水射流浸没式抛光数值分析与有效性实验验证[J]. 表面技术,2022,51(1):161-173. DENG Qianfa,WANG Yangxiao,LV Binghai,et al. Numerical analysis and experimental verification of self-excited pulse characteristics of abrasive waterjet immersion polishing[J]. Surface Technology,2022,51(1):161-173. [115] 安祥瑞. 空化磨料水射流切割装置的设计与研究[C]//第八届中国国际救捞论坛论文集.上海:上海浦江教育出版社,2014:377-379. AN Xiangrui. Design and research of cavitation abrasive waterjet cutting device[C]//Proceedings of the 8th China International Salvage Forum. Shanghai:Shanghai Pujiang Education Publishing House,2014:377-379. [116] MADADNIA J,SHANMUGAM D K,NGUYEN T,WANG Jun. A study of cavitation induced surface erosion in abrasive waterjet cutting systems[J]. Advanced Materials Research,2008,53-54:357-362. [117] OHASHI K,WANG R,HASEGAWA H,et al. Fundamental study on the precision abrasive machining using a cavitation in reversing suction flow[J]. Key Engineering Materials,2009,389-390:223-228. [118] 唐宇. 负压空化磨料水射流抛光机理与实验研究[D]. 长沙:湖南大学,2017. TANG Yu. Mechanism and experimental study of waterjet polishing of negative pressure cavitation abrasive[D]. Changsha:Hunan University,2017. [119] WANG Jun,ZHONG Y. Enhancing the depth of cut in abrasive waterjet cutting of alumina ceramics by using multipass cutting with nozzle oscillation[J]. Machining Science and Technology,2009,13(1):76-91. [120] WANG Jun,XU Shunli. Enhancing the AWJ cutting performance by multipass machining with controlled nozzle oscillation[J]. Key Engineering Materials,2005,291-292:453-458. [121] WANG Jun. Depth of cut models for multipass abrasive waterjet cutting of alumina ceramics with nozzle oscillation[J]. Frontiers of Mechanical Engineering in China,2010,5(1):19-32. [122] NATARAJAN Y,MURUGASEN P K,SUNDARAJAN L R,et al. Experimental investigation on cryogenic assisted abrasive water jet machining of aluminium alloy[J]. International Journal Precision Engineering Manufacturing-Green Technology,2019,6(3):415-432. [123] JERMAN M,ORBANIC H,JUNKAR M,et al. Thermal aspects of ice abrasive water jet technology[J]. Advances in Mechanical Engineering,2015,7(8):1-9. [124] VALENTINI J,LEBAR A,SABOTIN I,et al. Development of ice abrasive waterjet cutting technology[J]. Journal of Achievements of Materials and Manufacturing Engineering,2017,81(2):76-84. [125] TANGWARODOMNUKUN V,WANG Jun,HUANG Chuanzhen,et al. An investigation of hybrid laser- waterjet ablation of silicon substrates[J]. International Journal of Machine Tools and Manufacture,2012,56:39-49. [126] ZHU Hao,WANG Jun,YAO Peng,et al. Heat transfer and material ablation in hybrid laser-waterjet microgrooving of single crystalline germanium[J]. International Journal of Machine Tools and Manufacture,2017,116:25-39. [127] WANG Liang,HUANG Chuanzhen,WANG Jun,et al. An experimental investigation on laser assisted waterjet micro-milling of silicon nitride ceramics[J]. Ceramics International,2018,44(5):5636-5645. [128] YANAIDA K,OHASHI A. Flow characteristics of water jets[C]//Proceedings of the Second International Symposium on Jet Cutting Technology,Cambridge,UK. Cranfield:BHRA Fluid Engineering,1974:20-32. [129] LIU Hua. A study of the cutting performance in abrasive waterjet contouring of alumina ceramics and associated jet dynamic characteristics[D]. Brisbane:Queensland University of Technology,2004. [130] HOU Rongguo,HUANG Chuanzhen,ZHU Hongtao,et al. The measurement of the velocity outside the high pressure water jet and abrasive water jet nozzle based on the energy transfer method[J]. Advanced Materials Research,2010,135:361-364. [131] ISOBE T. Distribution of abrasive particles in abrasive water jet and acceleration mechanism[C]//Proceedings of the 9th International Symposium on Jet Cutting Technology. Milton Keynes:BHRA,1988:155-164. [132] SWANSON R K. Study of particle velocities in water driven abrasive jet cutting[C]//Proceedings of the 4th US Water Jet Conference,Berkeley. 1987:103-107. [133] SIMPSON M. Abrasive particle study in high pressure water jet cutting[J]. Internatinoal Journal of Water Jet Technology,1990,1:17-28. [134] HIMMELREICH U,RIESS W. Hydrodynamic investigations on abrasive-waterjet cutting tools[C]//Proceedings of the 10th International Conference on Jet Cutting Technology. Amsterdam:Elsevier Applied Science,1991:3-22. [135] CHEN W,GESKIN E. Measurement of the velocity of abrasive water jet by the use of laser transit anemometer[C]//the 10th International Symposium on Jet Cutting Technology. Amsterdam:Elsevier Applied Science,1990:23-36. [136] ANNONI M. Water jet velocity uncertainty in laser Doppler velocimetry measurements[J]. Measurement,2012,45(6):1639-1650. [137] BALZ R,MOKSO R,NARAYANAN C,et al. Ultra-fast X-ray particle velocimetry measurements within an abrasive water jet[J]. Experiments in fluids,2013,54(3):1-13. [138] BALZ R,HEINIGER K C. Determination of spatial velocity distributions of abrasive particles in abrasive water jets using laser-induced fluorescence under real conditions[C]//Proceedings of 16th WJTA-IMCA Conference and Expo. Switzerland:University of Applied Sciences Northwestern Switzerland,2012:90-99. [139] THONGKAEW K,WANG Jun. An experimental study of the particle velocities in abrasive waterjets[J]. International Journal of Abrasive Technology,2017,8(2):147-156. [140] ZELENAK M,FOLDYNA J,LINDE M. Measurement and analysis of abrasive particles velocities in AWSJ[J]. Procedia Engineering,2016,149:77-86. [141] THONGKAEW K. A study of the abrasive waterjet hole machining processes on woven cfrps and the jet impact characteristics[D]. Sydney:The University of NSW South Wales,2018. [142] LIU Hua,WANG Jun,KELSON N,et al. A study of abrasive waterjet characteristics by CFD simulation[J]. Journal of Materials Processing Technology,2004,153/154:488-493. [143] WANG Jun. Particle velocity models for ultra-high pressure abrasive waterjets[J]. Journal of Materials Processing Technology,2009,209(9):4573-4577. [144] CAO Liping,LIU Shi,HUANG Yaosong,et al. Study of high pressure waterjet characteristics based on CFD simulation[J]. Applied Mechanics and Materials,2012,224:307-311. [145] ZHANG Shangxian,LIU Yuan,WANG Quan. Track calculation and numerical simulation on particles in high pressure abrasive water jet nozzle[C]//International Conference on Measuring Technology and Mechatronics Automation,Zhongshan,China. Piscataway:IEEE Computer Society,2010:3293-3296. [146] THONGKAEW K,WANG Jun,YEOH G H. Impact characteristics and stagnation formation on a solid surface by a supersonic abrasive waterjet[J]. International Journal of Extreme Manufacturing,2019,1(4):43-61. [147] BOWDEN F P,FIELD J E. The brittle fracture of solids by liquid impact,by solid impact,and by shock[J]. Proceedings of the Royal Society of London. Series A,Mathematical and Physical Sciences,1964:331-352. [148] FIELD J E. Stress waves,deformation and fracture caused by liquid impact[J]. Philosophical Transactions for the Royal Society of London. Series A,Mathematical and Physical Sciences,1966:86-93. [149] HEYMANN F J. High-speed impact between a liquid drop and a solid surface[J]. Journal of Applied Physics,1969,40(13):5113-5122. [150] SCHWARTZENTRUBER J,SPELT J K,PAPINI M. Modelling of delamination due to hydraulic shock when piercing anisotropic carbon-fiber laminates using an abrasive waterjet[J]. International Journal of Machine Tools and Manufacture,2018,132:81-95. [151] GU Yiwen,NGUYEN T,DONOUGH M J,et al. Mechanisms of pop-up delamination in laminated composites pierced by the initial pure waterjet in abrasive waterjet machining[J]. Composite Structures,2022,297:115968.1-115968.15. [152] HSU C Y,LIANG C C,TENG T L,et al. A numerical study on high-speed water jet impact[J]. Ocean Engineering,2013,72(1):98-106. [153] COOK S S. Erosion by water-hammer[J]. Proceedings of the Royal Society of London. Series A,Containing Papers of a Mathematical and Physical Character,1928,119 (783):481-488. [154] BOURNE N K. On impacting liquid jets and drops onto polymethylmethacrylate targets[J]. Proceedings of the Royal Society. Mathematical,physical and engineering sciences,2005,461(2056):1129-1145 [155] NOURAEI H,KOWSARI K,SAMAREH B,et al. Calibrated CFD erosion modeling of abrasive slurry jet micro-machining of channels in ductile materials[J]. Journal of Manufacturing Processes,2016,23(8):90-101. [156] KOWSARI K,NOURAEI H,SAMAREH B,et al. CFD-aided prediction of the shape of abrasive slurry jet micro-machined channels in sintered ceramics[J]. Ceramics International,2016,42(6):7030-7042. [157] BITTER J G A. A study of erosion phenomena part Ⅰ[J]. Wear,1963,6(1):5-21. [158] BITTER J G A. A study of erosion phenomena part II[J]. Wear,1963,6(3):169-190. [159] TILLY G P. A two stage mechanism of ductile erosion[J]. Wear,1973,23(1):87-96. [160] FINNIE I. Erosion of surfaces by solid particles[J]. Wear,1960,3(2):87-103. [161] FINNIE I,MCFADDEN D H. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence[J]. Wear,1978,48(1):181-190. [162] HUTCHINGS I M,WINTER R E,FIELD J E. Solid particle erosion of metals:The removal of surface material by spherical projectiles[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Science,1976,348(1654):379-392. [163] HUTCHINGS I M. Deformation of metal surfaces by the oblique impact of square plates[J]. International Journal of Mechanical Sciences,1977,19(1):45-52. [164] JUNKAR M,JURISEVIC B,FAJDIGA M,et al. Finite element analysis of single particle impact in abrasive water jet machining[J]. International Journal of Impact Engineering,2006,32(7):1095-1112. [165] ELTOBGY M S,NG E,ELBESTAWI M A. Finite element modeling of erosive wear[J]. International Journal of Machine Tools and Manufacture,2005,45(11):1337-1346. [166] TAKAFFOLI M,PAPINI M. Finite element analysis of single impacts of angular particles on ductile targets[J]. Wear,2009,267(1):144-151. [167] TAKAFFOLI M,PAPINI M. Numerical simulation of solid particle impacts on Al6061-T6 part I:Three-dimensional representation of angular particles[J]. Wear,2012,292/293:100-110. [168] TAKAFFOLI M,PAPINI M. Numerical simulation of solid particle impacts on Al6061-T6 Part II:Materials removal mechanisms for impact of multiple angular particles[J]. Wear,2012,296(1):648-655. [169] ANWAR S,AXINTE D A,BECKER A A. Finite element modelling of abrasive waterjet milled footprints[J]. Journal of Materials Processing Technology,2013,213(2):180-193. |
[1] | 董志刚, 王中旺, 冉乙川, 鲍岩, 康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展[J]. 机械工程学报, 2024, 60(9): 26-56. |
[2] | 李晗, 章程, 陈杰, 安庆龙, 陈明. SiCf/SiC复合材料激光烧蚀辅助铣削材料去除机理与加工表面质量评价[J]. 机械工程学报, 2024, 60(9): 206-217. |
[3] | 田业冰, 马振, 钱乘, AHMAD S, 马锡峰, 苑祥昱, 范增华. 磁性剪切增稠抛光材料去除特性与预测模型[J]. 机械工程学报, 2024, 60(23): 365-376. |
[4] | 杨明辉, 邓犇, 易家乐, 彭芳瑜, 潘之千, 张杭. 金属基复合材料切削去除机理与过程建模研究综述[J]. 机械工程学报, 2023, 59(19): 460-474. |
[5] | 袁松梅, 邵梦博, 李麒麟, 高晓星, 陈博川. 碳化钛颗粒增强钢基复合材料超声振动辅助划痕仿真及试验研究[J]. 机械工程学报, 2022, 58(7): 246-257. |
[6] | 史兰宇, 王晨光, 陈杰, 郭国强, 黄文斌, 安庆龙, 明伟伟, 陈明. 高温合金蜂窝芯高速铣削材料去除机理与损伤行为[J]. 机械工程学报, 2022, 58(23): 284-295. |
[7] | 万亮, 钱亦楠, 涂翊翔, 杜航, 巫世晶, 李登. 磨料水射流单次铣削钛合金截面轮廓特征预测[J]. 机械工程学报, 2022, 58(23): 296-305. |
[8] | 卢守相, 杨秀轩, 张建秋, 周聪, 殷景飞, 张璧. 关于硬脆材料去除机理与加工损伤的理性思考[J]. 机械工程学报, 2022, 58(15): 31-45. |
[9] | 叶启立, 王成勇, 赖子健, 丁峰, 王军. 锆基非晶合金离散磨粒冲蚀机理研究[J]. 机械工程学报, 2022, 58(15): 92-104. |
[10] | 陈逢军, 尹业青, 胡天. 仿形喷嘴磨料射流抛光微结构仿真及试验研究[J]. 机械工程学报, 2022, 58(15): 177-187. |
[11] | 孙富建, 肖罡, 蒋志贤, 李时春, 万可谦. 去应力退火工艺对锻造TA7钛合金切削性能的影响[J]. 机械工程学报, 2022, 58(13): 298-306. |
[12] | 尹东杨, 陈晓川, 鲍劲松. 基于磨料水射流的三维编织复合材料铣削技术研究[J]. 机械工程学报, 2021, 57(5): 273-280. |
[13] | 高尚, 耿宗超, 吴跃勤, 王紫光, 康仁科. 石英玻璃超精密磨削加工的表面完整性研究[J]. 机械工程学报, 2019, 55(5): 186-195. |
[14] | 蔡志刚, 陈晓川, 王迪, 鲍劲松. 碳碳复合材料的水射流钻孔技术研究[J]. 机械工程学报, 2019, 55(3): 226-232. |
[15] | 丁文锋, 苗情, 李本凯, 徐九华. 面向航空发动机的镍基合金磨削技术研究进展[J]. 机械工程学报, 2019, 55(1): 189-215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||