机械工程学报 ›› 2025, Vol. 61 ›› Issue (7): 24-48.doi: 10.3901/JME.2025.07.024
张金1,2, 邓辰杰1,2, 雒泰民1,2, 罗代新1,2, 陶桂宝1,2, 曹华军1,2
收稿日期:
2024-06-03
修回日期:
2024-09-24
发布日期:
2025-05-12
作者简介:
张金,男,1993年出生,博士研究生。主要研究方向为CFRP超声辅助绿色智能制造技术。E-mail:jinzhang@cqu.edu.cn基金资助:
ZHANG Jin1,2, DENG Chenjie1,2, LUO Taimin1,2, LUO Daixin1,2, TAO Guibao1,2, CAO Huajun1,2
Received:
2024-06-03
Revised:
2024-09-24
Published:
2025-05-12
摘要: CFRP以其轻质高强和易于近净成形等优势广泛应用于航空航天、轨道交通和清洁能源装备领域的各类结构件中。然而,由于CFRP具有非均质和各向异性的材料特征,使其高质高效加工备受关注。因此,系统总结了CFRP超声振动铣削辅助装备及智能加工研究进展,概述了超声振动铣削辅助装备种类及其性能,进而对超声振动铣削辅助装备的设计、制造和CFRP性能测试开展详细论述,介绍了不同应用场景超声换能器的设计与仿真原理,分析了超声作用对CFRP的作用效果;同时探讨了超声维数、振幅、工艺参数和纤维方向角对铣削力、温度、刀具磨损和表面质量的影响机制;结合新型传感器在工业上的应用,总结了超声振动辅助加工向新时代智能自适应超声铣削的转变,提出自适应调控振幅的技术变革;最后,对CFRP超声振动铣削辅助装备及智能加工研究进行总结和展望。
中图分类号:
张金, 邓辰杰, 雒泰民, 罗代新, 陶桂宝, 曹华军. CFRP超声振动铣削辅助装备及智能加工研究进展[J]. 机械工程学报, 2025, 61(7): 24-48.
ZHANG Jin, DENG Chenjie, LUO Taimin, LUO Daixin, TAO Guibao, CAO Huajun. Advances in Ultrasonic Vibration-assisted Milling Equipment and Intelligent Machining of CFRP[J]. Journal of Mechanical Engineering, 2025, 61(7): 24-48.
[1] FU R,JIA Z Y,WANG F J,et al. Drill-exit temperature characteristics in drilling of UD and MD CFRP composites based on infrared thermography[J]. International Journal of Machine Tools and Manufacture,2018,135: 24-37. [2] DENG J,WANG F J,FU R,et al. Prediction of time-varying dynamics and chatter stability analysis for surface milling of thin-walled curved CFRP workpiece[J]. Journal of Materials Processing Technology,2023,322:118186. [3] SONG Y,CAO H J,QU D,et al. Specific cutting energy optimization of CF/PEEK milling considering size effect[J]. International Journal of Mechanical Sciences,2022,232:107618. [4] SONG Y,CAO H J,QU D,et al. Impact effect-based dynamics force prediction model of high-speed dry milling UD-CFRP considering size effect[J]. International Journal of Impact Engineering,2023,179:104659. [5] LUO B,ZHANG K F,LIU S N,et al. Investigation on the interface damage in drilling low-stiffness CFRP/Ti stacks[J]. Chinese Journal of Aeronautics,2019,32(9):2211-2221. [6] CAO S P,ZHANG K F,HOU G Y,et al. Experimental analysis of entrance and exit damage mechanism affected by the structural dynamic deformation characteristics during drilling of thin-walled CFRP[J]. Thin-Walled Structures,2022,180:109870. [7] 宋阳,曹华军,张金,等. 纤维随机分布CFRP高速铣削比能模型与表面质量优化[J]. 机械工程学报,2024,60(1):65-74. SONG Yang,CAO Huajun,ZHANG Jin,et al. High speed milling specific cutting energy model of CFRP and its surface quality optimization based on random fiber distribution[J]. Journal of Mechanical Engineering,2024,60(1):65-74. [8] NGUYEN D,BIN A MS,KHAWARIZMI R,et al. The effect of fiber orientation on tool wear in edge-trimming of carbon fiber reinforced plastics (CFRP) laminates[J]. Wear,2020,450-451:203213. [9] NORBERT G,XU J Y,DÁNIEL I P,et al. A review on advanced cutting tools and technologies for edge trimming of carbon fibre reinforced polymer(CFRP) composites[J]. Composites Part B:Engineering,2023,266:111037. [10] MOHAMED H,El-HOFY M H,El-HOFY H. Effect of cutting fluid delivery method on ultrasonic assisted edge trimming of multidirectional CFRP composites at different machining conditions[J]. Procedia CIRP,2018,68:450-455. [11] CAO H J,SONG Y,WU B,et al. A force model of high-speed dry milling CF/PEEK considering fiber distribution characteristics[J]. Journal of Manufacturing Processes,2021,68:602-615. [12] SONG Y,CAO H J,QU D,et al. Surface integrity optimization of high speed dry milling UD-CF/PEEK based on specific cutting energy distribution mechanisms effected by impact and size effect[J]. Journal of Manufacturing Processes,2022,79:731-744. [13] CAO H J,LIU L,WU B,et al. Process optimization of high-speed dry milling UD-CF/PEEK laminates using GA-BP neural network[J]. Composites Part B:Engineering,2021,221:109034. [14] LIU J,CHEN G,JI C H,et al. An investigation of workpiece temperature variation of helical milling for carbon fiber reinforced plastics (CFRP)[J]. International Journal of Machine Tools and Manufacture,2014,86:89-103. [15] GE J Y,CHEN G,SU Y X,et al. Effect of cooling strategies on performance and mechanism of helical milling of CFRP/Ti-6Al-4V stacks[J]. Chinese Journal of Aeronautics,2022,35(2):388-403. [16] 陈光,刘见,戈家影,等. 基于运动学及力热分析的CFRP超声振动辅助螺旋铣孔质量影响机制[J]. 机械工程学报,2021,57(1):199-209. CHEN Guang,LIU Jian,GE Jiaying,et al. Experimental study on ultrasonic vibration helical milling of CFRP based on kinematic and thermal-mechanical analysis[J]. Journal of Mechanical Engineering,2021,57(1):199-209. [17] ZHANG J,HUANG X F,KANG X Z,et al. Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal materials[J]. Frontiers of Mechanical Engineering,2023,18(2):28. [18] TIAN Y L,LIU Y P,WANG F J,et al. Modeling and analyses of helical milling process[J]. International Journal of Advanced Manufacturing Technology,2017,90:1003-1022. [19] BRINKSMEIER E,FANGMANN S,RENTSCH R. Drilling of composites and resulting surface integrity[J]. CIRP Annals - Manufacturing Technology,2011,60(1):57-60. [20] 彭振龙,张翔宇,张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报,2022,43(4):525587. PENG Zhenlong,ZHANG Xiangyu,ZHANG Deyuan. High-speed ultrasonic vibration cutting for difficult-to- machine materials in aerospace field[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):525587. [21] BREHL D E,DWO T A. Review of vibration-assisted machining[J]. Precision Engineering,2008,32(3):153-172. [22] 冯平法,王健健,张建富,等. 硬脆材料旋转超声加工技术的研究现状及展望[J]. 机械工程学报,2017,53(19):3-21. FENG Pingfa,WANG Jianjian,ZHANG Jianfu,et al. Research status and future prospects of rotary ultrasonic machining of hard and brittle materials[J]. Journal of Mechanical Engineering,2017,53(19):3-21. [23] 张翔宇,路正惠,彭振龙,等. 钛合金的高质高效超声振动切削加工[J]. 机械工程学报,2021,57(5):133-147. ZHANG Xiangyu,LU Zhenghui,PENG Zhenlong,et al. High quality and efficient ultrasonic vibration cutting of titanium alloys[J]. Journal of Mechanical Engineering,2021,57(5):133-147. [24] ELHAMI S,RAZFAR M R,FARAHNAKIAN M. Analytical,numerical and experimental study of cutting force during thermally enhanced ultrasonic assisted milling of hardened AISI 4140[J]. International Journal of Mechanical Sciences,2015,103:158-171. [25] SHEN S H,SHI Y L,ZHANG J H,et al. Effect of process parameters on micro-textured surface generation in feed direction vibration assisted milling[J]. International Journal of Mechanical Sciences,2020,167:105267. [26] ZHANG C,SONG Y. Design and kinematic analysis of a novel decoupled 3D ultrasonic elliptical vibration assisted cutting mechanism[J]. Ultrasonics,2019,95:79-94. [27] VERMA G C,PANDEY P M,DIXIT U S. Modeling of static machining force in axial ultrasonic-vibration assisted milling considering acoustic softening[J]. International Journal of Mechanical Sciences,2018,136:1-16. [28] ZHAO B,LI P T,ZHANG C Y,et al. Fractal characterization of surface microtexture of Ti6Al4V subjected to ultrasonic vibration assisted milling[J]. Ultrasonics,2020,102:106052. [29] ZHOU M,HU L H. Development of an innovative device for ultrasonic elliptical vibration cutting[J]. Ultrasonics,2015,60:76-81. [30] WEN Y Q,TANG J Y,ZHOU W,et al. Study on contact performance of ultrasonic-assisted grinding surface[J]. Ultrasonics,2019,91:193-200. [31] YU Y,GAO Q,QIAO G D,et al. A direction-guidance hybrid excitation method for inertial flexible hinge piezoelectric actuator with high speed performance[J]. Sensors and Actuators A:Physical,2020,314:112229. [32] YAO Y,PAN Y,LIU S Q. Study on heat pipe heat dissipation of high-power ultrasonic transducer[J]. Ultrasonics,2022,120:106654. [33] LI Y N,CUI Z,ZHANG H C,et al. Effects of TiZn3 and TiZn16 components on the microstructure and mechanical performance of Ti-6Al-4 V alloy joints formed via ultrasonic assisted brazing using pre-galvanized workpieces[J]. Ultrasonics,2022,125:106782. [34] SHANMUGAM P,IGLESIAS L,MICHAUD J F,et al. Broad bandwidth air-coupled micromachined ultrasonic transducers for gas sensing[J]. Ultrasonics,2021,114:106410. [35] ZHANG X S,YU Y,GAO Q,et al. A stick-slip linear piezoelectric actuator with mode conversion flexible hinge driven by symmetrical waveform[J]. Smart Materials and Structures,2020,29:055035. [36] 韩雄,孙哲飞,耿大喜,等. 高速超声振动铣削钛合金实验研究[J]. 北京航空航天大学学报,2023,49(7):1707-1714. HAN Xiong,SUN Zhefei,GENG Daxi,et al. Experiment research on high-speed ultrasonic vibration milling of titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1707-1714. [37] LIU J J,JIANG X G,HAN X,et al. Effects of rotary ultrasonic elliptical machining for side milling on the surface integrity of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology,2019,101:1451-1465. [38] YANG Z C,ZHU L D,ZHANG G X,et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools and Manufacture,2020,156:103594. [39] LUO M,LUO H,AXINTE D,et al. A wireless instrumented milling cutter system with embedded PVDF sensors[J]. Mechanical Systems and Signal Processing,2018,110:556-568. [40] ZHANG P F,GAO D,LU Y,et al. A novel smart toolholder with embedded force sensors for milling operations[J]. Mechanical Systems and Signal Processing,2022,175:109130. [41] ZHOU C A,GUO K,SUN J. An integrated wireless vibration sensing tool holder for milling tool condition monitoring with singularity analysis[J]. Measurement,2021,174:109038. [42] ZHANG J,LING L,LUO D X,et al. Cutting performance and surface quality of Ti-6Al-4V by longitudinal ultrasonic vibration-assisted high-speed dry milling with coated carbide tools[J]. International Journal of Advanced Manufacturing Technology,2023,126:5583-5596. [43] XUE F,ZHENG K,LIAO W H,et al. Investigation on fiber fracture mechanism of c/sic composites by rotary ultrasonic milling[J]. International Journal of Mechanical Sciences,2021,191:106054. [44] LOTFI M,CHARKHIAN A,AKBARI J. Surface analysis in rotary ultrasonic-assisted milling of CFRP and titanium[J]. Journal of Manufacturing Processes,2022,84:174-182. [45] SUN Z F,GENG D X,ZHENG W,et al. An innovative study on high-performance milling of carbon fiber reinforced plastic by combining ultrasonic vibration assistance and optimized tool structures[J]. Journal of Materials Research and Technology,2023,22:2131-2146. [46] YUAN S M,ZHU G Y,ZHANG C. Modeling of tool blockage condition in cutting tool design for rotary ultrasonic machining of composites[J]. International Journal of Advanced Manufacturing Technology,2017,91:2645-2654. [47] CHEN T,LI H B,YE M L,et al. Experimental study on effects of structural characteristics of C/E composite laminates on grinding temperature[J]. Composites Part B:Engineering,2019,157:100-108. [48] LIANG Y H,CHEN Y,ZHU Y J,et al. Investigations on tool clogging and surface integrity in ultrasonic vibration- assisted slot grinding of unidirectional CFRP[J]. International Journal of Advanced Manufacturing Technology,2021,112:1557-1570. [49] XUE F,ZHENG K,LIAO WH,et al. Experimental investigation on fatigue property at room temperature of C/SiC composites machined by rotary ultrasonic milling[J]. Journal of the European Ceramic Society,2021,41(6):3341-3356. [50] LIU Y,LIU Z B,WANG X B,et al. Experimental study on cutting force and surface quality in ultrasonic vibration- assisted milling of C/SiC composites[J]. International Journal of Advanced Manufacturing Technology,2021,112:2003-2014. [51] HUDA F N,ASCROFT H,BARNES S. Machinability study of ultrasonic assisted machining (UAM) of carbon fibre reinforced plastic (CFRP) with multifaceted tool[J]. Procedia CIRP,2016,46:488-491. [52] WANG D P,LU S X,XU D,et al. Research on material removal mechanism of C/SiC composites in ultrasound vibration-assisted grinding[J]. Materials,2020,13:1918. [53] AMIN M,YUAN S M,KHAN M Z,et al. Development of a generalized cutting force prediction model for carbon fiber reinforced polymers based on rotary ultrasonic face milling[J]. International Journal of Advanced Manufacturing Technology,2017,93:2655-2666. [54] AMIN M,YUAN S M,ISRAR A,et al. Development of cutting force prediction model for vibration-assisted slot milling of carbon fiber reinforced polymers[J]. International Journal of Advanced Manufacturing Technology,2018,94:3863-3874. [55] YANG ZY,ZOU P,ZHOU L,et al. Research on the machining mechanism of AISI 304 ultrasonic vibration assisted grinding[J]. Applied Acoustics,2023,214:109712. [56] NI C B,ZHU L D,LIU C F,et al. Analytical modeling of tool-workpiece contact rate and experimental study in ultrasonic vibration-assisted milling of Ti–6Al–4V[J]. International Journal of Mechanical Sciences,2018,142-143:97-111. [57] YANG Z Y,ZOU P,ZHOU L,et al. Research on the influence of stress wave on crack and chip formation mechanism in radial ultrasonic vibration assisted grinding[J]. Ultrasonics,2023,133:107054. [58] WANG H,HU Y B,CONG W L,et al. Rotary ultrasonic surface machining of CFRP composites:Effects of horizontal ultrasonic vibration[J]. Procedia Manufacturing,2019,34:399-407. [59] WANG H,HU Y B,CONG W L,et al. A novel investigation on horizontal and 3D elliptical ultrasonic vibrations in rotary ultrasonic surface machining of carbon fiber reinforced plastic composites[J]. Journal of Manufacturing Processes,2020,52:12-25. [60] WANG H,HU Y B,CONG W L,et al. A mechanistic model on feeding-directional cutting force in surface grinding of CFRP composites using rotary ultrasonic machining with horizontal ultrasonic vibration[J]. International Journal of Mechanical Sciences,2019,155:450-460. [61] RICHARD B,SEBASTIAN W,THOMAS J,et al. Generation of functional surfaces by using a simulation tool for surface prediction and micro structuring of cold-working steel with ultrasonic vibration assisted face milling[J]. Journal of Materials Processing Technology,2018,255:749-759. [62] MA C X,SHAMOTO E,MORIWAKI T,et al. Study of machining accuracy in ultrasonic elliptical vibration cutting[J]. International Journal of Machine Tools and Manufacture,2004,44:1305-1310. [63] XIE W B,WANG X K,ZHAO B,et al. Surface and subsurface analysis of TC18 titanium alloy subject to longitudinal-torsional ultrasonic vibration-assisted end milling[J]. Journal of Alloys and Compounds,2022,929:167259. [64] LIU S,SHAN X B,CAO W,et al. A longitudinal- torsional composite ultrasonic vibrator with thread grooves[J]. Ceramics International,2017,43(1):214-220. [65] 袁松梅,唐志祥,吴奇,等. 纵扭超声换能器设计及其性能测试研究[J]. 机械工程学报,2019,55(1):139-148. YUAN Songmei,TANG Zhixiang,WU Qi,et al. Design of longitudinal torsional ultrasonic transducer and its performance test[J]. Journal of Mechanical Engineering,2019,55(1):139-148. [66] XU J,FENG P F,FENG F,et al. Subsurface damage and burr improvements of aramid fiber reinforced plastics by using longitudinal–torsional ultrasonic vibration milling[J]. Journal of Materials Processing Technology,2021,297:117265. [67] ZHANG Z Q,JIAO F,LI Y X,et al. Experimental study on rotary longitudinal-torsional ultrasonic machining of unidirectional CFRP[J]. Chinese Journal of Aeronautics,2024. [68] LIU J,CHEN G,REN C Z,et al. Effects of axial and longitudinal-torsional vibration on fiber removal in ultrasonic vibration helical milling of CFRP composites[J]. Journal of Manufacturing Processes,2020,58:868-883. [69] DU P F,HAN L,QIU X,et al. Development of a high-precision piezoelectric ultrasonic milling tool using longitudinal-bending hybrid transducer[J]. International Journal of Mechanical Sciences,2022,222:107239. [70] GENG D X,ZHANG D Y,XU Y G,et al. Rotary ultrasonic elliptical machining for side milling of CFRP:Tool performance and surface integrity[J]. Ultrasonics,2015,59:128-137. [71] CHEN C Y,FENG P F,FENG F,et al. Fast texturing of micron grating on curved metallic surfaces using bending-torsional-coupled rotary ultrasonic side milling[J]. Manufacturing Letters,2024,40:16-21. [72] WAN W Q,CHENG J F,XU L H,et al. Investigation on friction characteristics of micro double cup extrusion assisted by different ultrasonic vibration modes[J]. International Journal of Advanced Manufacturing Technology,2022,123:2549-2560. [73] ZHANG J,LING L,WANG Q Y,et al. Surface quality investigation in high-speed dry milling of Ti-6Al-4V by using 2D ultrasonic-vibration-assisted milling platform[J]. Advances in Manufacturing,2024,12:349-364. [74] YU W W,CHEN J,AN Q L,et al. Investigations on the effect of ultrasonic vibration on fibre fracture and removal mechanism in cutting of fibre reinforced silicon carbide ceramic matrix composites[J]. Journal of Manufacturing Processes,2023,94:359-373. [75] JIA D Z,LI C H,ZHANG Y B,et al. Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration[J]. International Journal of Advanced Manufacturing Technology,2019,100:457-473. [76] GAO T,ZHANG X P,LI C H,et al. Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding[J]. Journal of Manufacturing Processes,2020,51:44-61. [77] 刘强,张海军,刘献礼,等. 智能刀具研究综述[J]. 机械工程学报,2021,57(21):248-268. LIU Qiang,ZHANG Haijun,LIU Xianli,et al. A review of research on intelligent cutting tools[J]. Journal of Mechanical Engineering,2021,57(21):248-268. [78] SONG Y,CAO H J,WANG Q Y,et al. Surface roughness prediction model in high-speed dry milling CFRP considering carbon fiber distribution[J]. Composites Part B:Engineering,2022,245:110230. [79] HE C L,ZONG W J,XUE C X,et al. An accurate 3D surface topography model for single point diamond turning[J]. International Journal of Machine Tools and Manufacture,2018,134:42-68. [80] WANG H J,SUN J,ZHANG D D,et al. The effect of cutting temperature in milling of carbon fiber reinforced polymer composites[J]. Composites Part A:Applied Science and Manufacturing,2016,91(1):380-387. [81] LIU L,QU D,WANG J C,et al. Thermal-field analytical modeling of machined surface layer in high-speed-dry milling UD-CF/PEEK considering thermal anisotropy and nonlinear thermal conductivity[J]. Composites Part A:Applied Science and Manufacturing,2024,176:107864. [82] 叶文昌,郭必成,邓朝晖,等. 刀具智能化关键技术的研究进展及发展趋势[J]. 机械工程学报,2023,59(23):265-282. YE Wenchang,GUO Bicheng,DENG Zhaohui,et al. Advances in key technologies of the intelligence Tool[J]. Journal of Mechanical Engineering,2023,59(23):265-282. [83] WANG F J,LI Y,ZHANG B Y,et al. Theoretical model of instantaneous milling force for CFRP milling with a ball-end milling cutter:Considering spatial dimension and temporal dimension discontinuity effects[J]. Journal of Manufacturing Processes,2022,75:346-362. [84] CHEN L M,LI M J,YANG X J. The feasibility of fast slotting thick CFRP laminate using fiber laser-CNC milling cooperative machining technique[J]. Optics & Laser Technology,2022,149:107794. [85] BAKHSHANDEH P,MOHAMMADI Y,ALTINTAS Y,et al. Digital twin assisted intelligent machining process monitoring and control[J]. CIRP Journal of Manufacturing Science and Technology,2024,49:180-190. [86] BLEICHER F,RAMSAUER C M,OSWALD R,et al. Method for determining edge chipping in milling based on tool holder vibration measurements[J]. CIRP Annals - Manufacturing Technology,2020,69:101-104. [87] CHEN G,GAO Q,YANG X P,et al. Investigation of heat partition and instantaneous temperature in milling of Ti-6Al-4V alloy[J]. Journal of Manufacturing Processes,2022,80:302-319. [88] LI X B,LIU X L,YUE C X,et al. Systematic review on tool breakage monitoring techniques in machining operations[J]. International Journal of Machine Tools and Manufacture,2022,176:103882. [89] ZHANG J,KANG X Z,YE Z M,et al. Development and testing of a wireless smart toolholder with multi-sensor fusion[J]. Frontiers of Mechanical Engineering,2023,18(4):55. [90] 曹华军,张金,康信禛,等. 一种基于智能刀柄的超声铣削自适应调控装置:中国,202310008617.7[P]. 2023-01-04. CAO Huajun,ZHANG Jin,KANG Xinzhen,et al. A kind of ultrasonic milling adaptive regulation device b |
[1] | 丁文锋, 赵俊帅, 张洪港, 赵彪, 司文元, 宋强, 黄庆飞. 齿轮高效精密磨削加工及表面完整性控制技术研究进展[J]. 机械工程学报, 2024, 60(7): 350-373. |
[2] | 潘延安, 鲍岩, 冯嘉健, 殷森, 董志刚, 康仁科. 高比重钨合金超声椭圆振动切削去除机理研究[J]. 机械工程学报, 2023, 59(21): 65-74. |
[3] | 殷森, 鲍岩, 潘延安, 董志刚, 金洙吉, 康仁科. 具有多级放大功能的超声椭圆振动切削装置的设计[J]. 机械工程学报, 2022, 58(11): 260-268. |
[4] | 丁文锋, 曹洋, 赵彪, 徐九华. 超声振动辅助磨削加工技术及装备研究的现状与展望[J]. 机械工程学报, 2022, 58(9): 244-269. |
[5] | 袁松梅, 邵梦博, 李麒麟, 高晓星, 陈博川. 碳化钛颗粒增强钢基复合材料超声振动辅助划痕仿真及试验研究[J]. 机械工程学报, 2022, 58(7): 246-257. |
[6] | 刘雨生, 李洋, 滕利臣, 周正干. 基于超声复解析信号的碳纤维层压复合材料检测方法研究[J]. 机械工程学报, 2020, 56(24): 31-39. |
[7] | 何存富, 李子明, 刘增华, 冯雪健, 任捷, 吴斌. 基于空间-频率-波数法的梁中分层缺陷定量检测[J]. 机械工程学报, 2019, 55(6): 74-82. |
[8] | 赵波, 殷森, 王晓博, 赵重阳. 超声纵-扭复合空心变幅杆的振动特性分析[J]. 机械工程学报, 2019, 55(5): 121-129. |
[9] | 王强, 胥静, 王梦欣, 宋春晓. 结构裂纹损伤的Lamb波层析成像监测与评估研究[J]. 机械工程学报, 2016, 52(6): 30-36. |
[10] | 谢伟峰, 范成磊, 杨春利, 林三宝, 陶波. 超声辅助MIG焊接中超声作用特性研究[J]. 机械工程学报, 2016, 52(2): 19-25. |
[11] | 张小伟;唐志峰;吕福在;王亚东;柳伟续. 基于半解析有限元法的多层管超声导波数值模拟与试验研究[J]. , 2014, 50(8): 10-16. |
[12] | 李晓谦;陈铭;赵世琏;李开晔;吴昊. 功率超声对7050铝合金除气净化作用的试验研究[J]. , 2010, 46(18): 41-45. |
[13] | 皮钧. 圆环斜槽传振杆的纵扭振动转换[J]. , 2008, 44(5): 242-248. |
[14] | 孙学伟;李富才;苗晓婷;孟光;周利民. F厚梁结构中的超声导波传播与损伤识别[J]. , 2012, 48(14): 1-10. |
[15] | 刘增华;何存富;吴斌;王秀彦. 带粘弹性包覆层管道中的纵向模态[J]. , 2007, 43(4): 187-192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||