机械工程学报 ›› 2025, Vol. 61 ›› Issue (7): 1-23.doi: 10.3901/JME.2025.07.001
赵猛1,2,3, 付饶1,2,3, 王福吉1,2,3, 赵宏伟1,2,3, 李恩1,2,3, 杜长霖1,2,3
收稿日期:
2024-08-15
修回日期:
2024-11-19
发布日期:
2025-05-12
作者简介:
赵猛,男,1994年出生,博士,助理研究员。主要研究方向为高性能复合材料及其叠层结构切削加工。E-mail:Zmeng@dlut.edu.cn基金资助:
ZHAO Meng1,2,3, FU Rao1,2,3, WANG Fuji1,2,3, ZHAO Hongwei1,2,3, LI En1,2,3, DU Changlin1,2,3
Received:
2024-08-15
Revised:
2024-11-19
Published:
2025-05-12
摘要: 碳纤维增强树脂基热固性复合材料(简称“热固性复材”)/金属叠层结构是高端装备常见的结构形式,一体化钻孔是实现叠层结构连接装配的重要环节之一。然而,热固性复材和金属的物化属性差异显著,一体化钻孔时损伤频发,难以满足工程领域的迫切需求。为此,热固性复材/金属叠层结构的高质高效一体化钻孔技术近年来备受关注,学术和工程领域的相关人员开展了大量有价值的研究工作。从热固性复材/金属叠层结构界面区域共切削去除行为、钻孔力热与切屑行为、低损伤钻孔刀具和低损伤钻孔工艺四个方面,综述了叠层结构一体化钻孔技术的研究进展。首先,详细介绍了叠层结构界面区域共切削去除行为在宏观和细观尺度上的研究进程,其次分析了叠层结构一体化钻孔过程中轴向力、钻削温度和切屑的演化行为和变化规律,然后归纳了叠层结构低损伤一体化钻孔刀具的发展历程,进一步阐述了叠层结构一体化钻孔工艺参数、冷却和振动辅助等工艺对钻孔质量的影响机制,最后展望了热固性复材/金属叠层结构一体化切削理论、钻孔技术和钻孔装备等方面的发展机遇和面临挑战。
中图分类号:
赵猛, 付饶, 王福吉, 赵宏伟, 李恩, 杜长霖. 热固性复材/金属叠层结构一体化钻孔技术进展[J]. 机械工程学报, 2025, 61(7): 1-23.
ZHAO Meng, FU Rao, WANG Fuji, ZHAO Hongwei, LI En, DU Changlin. Review of One-shot Drilling on Carbon Fiber-reinforced Thermosetting Composite and Metal Stacks[J]. Journal of Mechanical Engineering, 2025, 61(7): 1-23.
[1] GAO T,ZHANG Y,LI C,et al. Fiber-reinforced composites in milling and grinding:Machining bottlenecks and advanced strategies[J]. Frontiers of Mechanical Engineering,2022,17(2):24. [2] 杜善义,关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料力学,2008,25(1):1-10. DU Shanyi,GUAN Hualin. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica,2008,25(1):1-10. [3] SONG W D,CHEN Y,MU Z Z,et al. A feather-inspired interleaf for enhanced interlaminar fracture toughness of carbon fiber reinforced polymer composites[J]. Composites Part B:Engineering,2022,236:109827. [4] GAO T,LI C,WANG Y,et al. Carbon fiber reinforced polymer in drilling:From damage mechanisms to suppression[J]. Composite Structures,2022,286:115232. [5] 宋阳,曹华军,张金,等. 纤维随机分布CFRP高速铣削比能模型与表面质量优化[J]. 机械工程学报,2024,60(1):65-74. SONG Yang,CAO Huajun,ZHANG Jin,et al. High speed milling specific cutting energy model of cfrp and its surface quality optimization based on random fiber distribution[J]. Journal of Mechanical Engineering,2024,60(1):65-74. [6] 王帅帅,段振景,刘吉宇,等. 冷等离子体耦合微量润滑微铣削CFRP加工性能与机理研究[J]. 机械工程学报,2024,60(9):338-350. WANG Shuaishuai,DUAN Zhenjing,LIU Jiyu,et al. Study on the machining performance and mechanism of cold plasma coupled micro-lubrication micro-milling CFRP[J]. Journal of Mechanical Engineering,2024,60(9):338-350. [7] GEIER N,PATRA K,RAVI S A,at al. A critical review on mechanical micro-drilling of glass and carbon fibre reinforced polymer (GFRP and CFRP) composites[J]. Composites Part B:Engineering,2023,254. [8] 董松. CFRP/铝合金叠层结构机器人旋转超声钻削机理研究[D]. 南京:南京理工大学,2022. DONG Song. Mechanism study of robotic rotary ultrasonic drilling of CFRP/aluminum alloy laminated structure[D]. Nanjing:Nanjing University of Science and Technology,2022. [9] DEVITTE C,SOUZA A J,AMORIM H J. Impact of cooled compressed air and high-speed cutting on the drilling of hybrid composite-metal stacks[J]. International Journal of Advanced Manufacturing Technology,2023,125(11-12):5445-5461. [10] 南成根,吴丹,马信国,等. 碳纤维复合材料/钛合金叠层钻孔质量研究[J]. 机械工程学报,2016,52(11):177-185. NAN Chenggen,WU Dan,MA Xinguo,et al. Study on the drilling quality of carbon fiber reinforced plastic and titanium stacks[J]. Journal of Mechanical Engineering,2016,52(11):177-185. [11] WEI J C,JIAO G Q,JIA P R,et al. The effect of interference fit size on the fatigue life of bolted joints in composite laminates[J]. Composites Part B:Engineering,2013,53:62-68. [12] XU J,KOLESNYK V,LI C,et al. A critical review addressing conventional twist drilling mechanisms and quality of CFRP/Ti stacks[J]. Journal of Materials Research and Technology,2023,24:6614-6651. [13] 陈亚莉. 从A350XWB看大型客机的选材方向[J]. 航空制造技术,2009(12):34-37. CHEN Yali. Trend of material selection on large liner through A350XWB[J]. Aeronautical Manufacturing Technology,2009(12):34-37. [14] TSAO C C. Experimental study of drilling composite materials with step-core drill[J]. Materials & Design,2008,29(9):1740-1744. [15] SELVAKUMAR S J,MURALIDHARAN S M. Performance analysis of drills with structured surfaces when drilling CFRP/AA7075 stack under MQL condition[J]. Journal of Manufacturing Processes,2023,89:194-219. [16] WHINNEM E,LIPCZYNSKI G,ERIKSSON I. Development of orbital drilling for the Boeing 787[J]. SAE International Journal of Aerospace,2008,1:811-816. [17] PANICO M,DURANTE M,LANGELLA A,et al. One-shot drilling process for thin CFRP/Aluminium alloys stacks[J]. Materials and Manufacturing Processes,2024,39(9):1187-1202. [18] 白大山,陈五一,陈雪梅. 碳纤维增强复合材料/轻合金叠层结构制孔技术研究进展[J]. 航空制造技术,2022,65(9):82-88. BAI Dashan,CHEN Wuyi,CHEN Xuemei. Research advances in hole making technology of carbon fiber reinforced plastics/light alloy laminated structure[J]. Aeronautical Manufacturing Technology,2022,65(9):82-88. [19] 马立敏,张嘉振,岳广全,等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报,2015,32(2):317-322. MA Limin,ZHANG Jiazhen,YUE Guangquan,et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica,2015,32(2):317-322. [20] SAMSUDEENSADHAM S,KRISHNARAJ V,RAMACHANDRAN A R. Multi-attribute optimization of drilling CFRP/Ti-6Al-4V alloy hybrid stacks using VIKOR[J]. Proceedings of the Institution of Mechanical Engineers,Part E:Journal of Process Mechanical Engineering,2023. [21] 高腾,李长河,张彦彬,等. 纳米增强生物润滑剂CFRP材料去除力学行为与磨削力预测模型[J]. 机械工程学报,2023,59(13):325-342. Gao Teng,LI Changhe,ZHANG Yanbin,et al. Mechanical behavior of material removal and predictive force model for CFRP grinding using nano reinforced biological lubricant[J]. Journal of Mechanical Engineering,2023,59(13):325-342. [22] BÖHLAND F,HILLIGARDT A,SCHULZE V. Analysis of subsurface damage during milling of CFRP due to spatial fibre cutting angle,tool geometry and cutting parameters[J]. Composites Part B:Engineering,2024,281:111533. [23] JAISWAL A P,MUN C H,KIM D Y,et al. Experimental observation for reducing uncut fiber during the carbon fiber-reinforced polymer drilling process[J]. International Journal of Advanced Manufacturing Technology,2024,133(9-10):5089-5100. [24] 贾振元,付饶,王福吉. 碳纤维复合材料构件加工技术进展[J]. 机械工程学报,2023,59(19):348-374. JIA Zhenyuan,FU Rao,WANG Fuji. Research advance review of machining technology for carbon fiber reinforced polymer composite components[J]. Journal of Mechanical Engineering,2023,59(19):348-374. [25] CHEN C,ZHAO Q,WANG A X,et al. Experimental study on step drill geometry and pecking drilling with variable parameters processing method as drilling of CFRP and Ti stacks[J]. Journal of Manufacturing Processes,2024,117:355-365. [26] ZHUANG K J,WU Z Z,WAN L Y,et al. Investigation of different abrasive jet machining methods applied to milling tool coatings for post-treatment[J]. Surface and Coatings Technology,2024,491:131156. [27] ZHUANG K J,ZHU K,WEI X Y,et al. A dual-stage wear rate model based on wear mechanisms analysis during cutting Inconel 718 with TiAlN coated tools[J]. Journal of Manufacturing Processes,2024,126:24-34. [28] TAKEYAMA H,IIJIMA N. Machinability of glass fiber reinforced plastics and application of ultrasonic machining[J]. CIRP Annals - Manufacturing Technology,1988,37(1):93-96. [29] CHEN C,WANG A X,ZHENG Z,et al. A study on drilling of cfrp/ti stacks:temperature field and thermal damage of the interface region[J]. Materials,2023,16(7):2586. [30] EVERSTINE G C,ROGERS T G. A theory of machining of fiber-reinforced materials[J]. Journal of Composite Materials,1971,5(1):94-106. [31] BHATNAGAR N,RAMAKRISHNAN N,NAIK N K,et al. On the machining of fiber reinforced plastic (FRP) composite laminates[J]. International Journal of Machine Tools and Manufacture,1995,35(5):701-716. [32] ZHANG L C. Cutting composites:A discussion on mechanics modelling[J]. Journal of Materials Processing Technology,2009,209(9):4548-4552. [33] SEEHOLZER L,KNEUBÜHLER F,GROSSENBACHER F,et al. Tool wear and spring back analysis in orthogonal machining unidirectional CFRP with respect to tool geometry and fibre orientation[J]. International Journal of Advanced Manufacturing Technology,2021,115(9-10):2905-2928. [34] SANTIUSTE C,RODRÍGUEZ-MILLÁN M,GINER E,et al. The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone[J]. Composite Structures,2014,116(1):423-431. [35] 殷俊伟,贾振元,王福吉,等. 基于CFRP切削过程仿真的面下损伤形成分析[J]. 机械工程学报,2016,52(17):58-64. YIN Junwei,JIA Zhenyuan,WANG Fuji,et al. FEM simulation analysis of subsurface damage formation based on continuously cutting process of CFRP[J]. Journal of Mechanical Engineering,2016,52(17):58-64. [36] SONG C L,JIN X L. Shearing-buckling mechanism in orthogonal cutting of unidirectional carbon fiber reinforced polymer[J]. Journal of Materials Processing Technology,2020,280:116612. [37] SONG C L,JIN X L. Analytical modeling of chip formation mechanism in cutting unidirectional carbon fiber reinforced polymer[J]. Composites Part B:Engineering,2022,239:109983. [38] XU J Y,MANSORI M E. Cutting modeling using cohesive zone concept of titanium/CFRP composite stacks[J]. International Journal of Precision Engineering and Manufacturing,2015,16(10):2091-2100. [39] XU J Y,MANSORI M E. Numerical studies of frictional responses when cutting hybrid CFRP/Ti composite[J]. International Journal of Advanced Manufacturing Technology,2016,87(1-4):657-675. [40] XU J Y,MANSORI M E,VOISIN J L,et al. On the interpretation of drilling CFRP/Ti6Al4V stacks using the orthogonal cutting method:Chip removal mode and subsurface damage formation[J]. Journal of Manufacturing Processes,2019,44:435-447. [41] XU J,MANSORI E M. Numerical study on the chip removal and surface quality of CFRP/Ti6AL4V stacks[J]. Indian Journal of Engineering and Materials Sciences,2019,26(5-6). [42] JIA Z Y,CHEN C,WANG F J,et al. Three-dimensional oblique cutting model for sub-surface damage analysis in CFRP/Ti stack composite machining[J]. International Journal of Advanced Manufacturing Technology,2018,96(1-4):643-655. [43] XU W X,ZHANG L C. On the mechanics and material removal mechanisms of vibration-assisted cutting of unidirectional fibre-reinforced polymer composites[J]. International Journal of Machine Tools and Manufacture,2014,80:1-10. [44] XU W X,ZHANG L C. Mechanics of fibre deformation and fracture in vibration-assisted cutting of unidirectional fibre-reinforced polymer composites[J]. International Journal of Machine Tools and Manufacture,2016,103:40. [45] QI Z C,ZHANG K F,CHENG H,et al. Microscopic mechanism based force prediction in orthogonal cutting of unidirectional CFRP[J]. International Journal of Advanced Manufacturing Technology,2015,79(5-8):1209-1219. [46] 贾振元,毕广健,王福吉,等. 碳纤维增强树脂基复合材料切削机理研究[J]. 机械工程学报,2018,54(23):199-208. JIA Zhenyuan,BI Guangjian,WANG Fuji,et al. The research of machining mechanism of carbon fiber reinforced plastic[J]. Journal of Mechanical Engineering,2018,54(23):199-208. [47] 毕广健. CFRP周铣加工损伤分析及其抑制方法研究[D].大连:大连理工大学,2022. BI Guangjian. Research on damage analysis and damage suppression methodin peripheral milling of CFRP[D]. Dalian:Dalian University of Technology,2022. [48] 付饶. CFRP低损伤钻削制孔关键技术研究[D]. 大连:大连理工大学,2017. FU Rao. Research of key technologies for low-damage drilling CFRP composites[D]. Dalian:Dalian University of Technology,2017. [49] WANG D,JIAO F,MAO X S. Mechanics of thrust force on chisel edge in carbon fiber reinforced polymer (CFRP) drilling based on bending failure theory[J]. International Journal of Mechanical Sciences,2020,169:105336. [50] LI S J,DAI L Y,LI C P,et al. Prediction model of chisel edge thrust force and material damage mechanism for interlaminar-direction drilling of UD-CFRP composite laminates[J]. Composite Structures,2022,298:116023. [51] SEEHOLZER L,SCHEUNER D,WEGENER K. Analytical force model for drilling out unidirectional carbon fibre reinforced polymers (CFRP)[J]. Journal of Materials Processing Technology,2020,278:116489. [52] XU Q H,XIAO S L,GAO H,et al. The propagation of fibre-matrix interface debonding during CFRP edge milling process with the multi-teeth tool:A model analysis[J]. Composites Part A:Applied Science and Manufacturing,2022,160:107050. [53] KIM G,SONG K,JUN M B G,et al. Effect of fiber bending induced matrix shear behavior on machined surface quality in carbon fiber reinforced plastic milling[J]. Composite Structures,2022,287:115343. [54] YAN X Y,REINER J,BACCA M,et al. A study of energy dissipating mechanisms in orthogonal cutting of UD-CFRP composites[J]. Composite Structures,2019,220(15):460-472. [55] LI H N,ZHANG J,SUN T. Tailoring fiber arrangement in subsurface damage layer of unidirectional CFRP composites by reverse multi-pass cutting[J]. Composites Science and Technology,2022,227:109571. [56] XIAO J Z,WANG G F,SU H,et al. Study on cutting force and induced thermal damage of carbon fiber reinforced polymer composites using microscopic simulation modeling[J]. Polymer Composites,2022,43(3):1626-1636. [57] ZHU Z J,KANG R Q,HUANG J W,et al. Investigation on cutting damage mechanism of carbon fiber reinforced polymer based on macro/microscopic simulation[J]. International Journal of Advanced Manufacturing Technology,2023,127(7-8):3585-3597. [58] LI H N,WANG J P,WU C Q,et al. Damage behaviors of unidirectional CFRP in orthogonal cutting:A comparison between single-and multiple-pass strategies[J]. Composites Part B:Engineering,2020,185:107774. [59] XU J Y,LIN T Y,LI L F,et al. Numerical study of interface damage formation mechanisms in machining CFRP/Ti6Al4V stacks under different cutting sequence strategies[J]. Composite Structures,2022,285:115236. [60] LI C P,ZHAO Y F,QIU X Y,et al. Interface mechanical damage mechanism in machining carbon fiber-reinforced plastic/Ti stacks based on a three-dimensional microscopic oblique cutting model[J]. Composite Structures,2022,279:114737. [61] ZHANG C,LIU K,CEPERO-MEJIAS F,et al. Numerical investigation on orthogonal cutting and damage response of CFRP/Ti6Al4V stacks[J]. Journal of Thermoplastic Composite Materials,2024,37:3492-3515. [62] HO-CHENG H,DHARAN C K H. Delamination during drilling in composite laminates[J]. Journal of Manufacturing Science and Engineering- Transactions of the ASME,1990,112(3):236-239. [63] CAO S Y,LI H N,TAN G F,et al. Bi-directional drilling of CFRPs:From principle to delamination suppression[J]. Composites Part B:Engineering,2023,248:110385. [64] AN Q L,DANG J,LI J,et al. Investigation on the cutting responses of CFRP/Ti stacks:With special emphasis on the effects of drilling sequences[J]. Composite Structures,2020,253. [65] LUO B,LI Y,ZHANG K F,et al. A novel prediction model for thrust force and torque in drilling interface region of CFRP/Ti stacks[J]. International Journal of Advanced Manufacturing Technology,2015,81(9-12). [66] LUO B,ZHANG K,LI Y,et al. Modelling of thrust force for worn drill bits characterized by cutting edge radius in drilling carbon fibre-reinforced plastic/Ti-6Al-4V alloy stacks[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2018,232(11). [67] CHENG H,ZHANG K F,WANG N,et al. A novel six-state cutting force model for drilling-countersinking machining process of CFRP-Al stacks[J]. International Journal of Advanced Manufacturing Technology,2017,89:2063-2076. [68] JIA Z Y,ZHANG C,WANG F J,et al. A mechanistic prediction model for thrust force and torque during drilling of CFRP/Ti stacks[J]. International Journal of Advanced Manufacturing Technology,2020,106:3105-3115. [69] KIM G W,LEE K Y. Critical thrust force at propagation of delamination zone due to drilling of FRP/metallic strips[J]. Composite Structures,2005,69(2):137-141. [70] QI Z C,ZHANG K F,LI Y,et al. Critical thrust force predicting modeling for delamination-free drilling of metal-FRP stacks[J]. Composite Structures,2014,107:604-609. [71] HEIDARY H,MEHRPOUYA M A. Effect of backup plate in drilling of composite laminates,analytical and experimental approaches[J]. Thin-Walled Structures,2019,136:323-332. [72] JIA Z Y,CHEN C,WANG F J,et al. Analytical model for delamination of CFRP during drilling of CFRP/metal stacks[J]. International Journal of Advanced Manufacturing Technology,2020,106(11-12):5099-5109. [73] RAMULU M,BRANSON T,KIM D. A study on the drilling of composite and titanium stacks[J]. Composite Structures,2001,54(1):67-77. [74] BRINKSMEIER E,FANGMANN S,RENTSCH R. Drilling of composites and resulting surface integrity[J]. CIRP Annals-Manufacturing Technology,2011,60(1):57-60. [75] WANG C Y,CHEN Y H,AN Q L,et al. Drilling temperature and hole quality in drilling of CFRP/ aluminum stacks using diamond coated drill[J]. International Journal of Precision Engineering and Manufacturing,2015,16(8):1689-1697. [76] SHAO Z,JIANG X,GENG D,et al. The interface temperature and its influence on surface integrity in ultrasonic-assisted drilling of CFRP/Ti stacks[J]. Composite Structures,2021,266:113803. [77] MONTOYA M,CALAMAZ M,GEHIN D,et al. Numerical simulation of workpiece thermal field in drilling CFRP/aluminum alloy[C]//Key Engineering Materials.,2014,611-612. [78] CHEN C,ZHAO Q,WANG A X,et al. Numerical study on the heat effect on the drilling damage of Ti/CFRP stacks[J]. Polymer Composites,2024,45(10):9487-9500. [79] LI Y X,JIAO F,ZHANG Z Q,et al. A prediction model for drilling temperature of CFRP/Ti stacks and green cooling strategy considering chip ejection process[J]. Journal of Materials Processing Technology,2024,329:118424. [80] 王义文,许成阳,许家忠,等. CFRP加工用内排屑钻头排屑条件的仿真分析及试验研究[J]. 机械工程学报,2019,55(5):223-231. WANG Yiwen,XU Chengyang,XU Jiazhong,et al. Simulation analysis and experimental study on chip removal conditions of internal chip removal bits for cfrp machining[J]. Journal of Mechanical Engineering,2019,55(5):223-231. [81] ZITOUNE R,KRISHNARAJ V,COLLOMBET F. Study of drilling of composite material and aluminium stack[J]. Composite Structures,2010,92(5):1246-1255. [82] LUO B,ZHANG K F,LIU S N,et al. Investigation on the interface damage in drilling low-stiffness CFRP/Ti stacks[J]. Chinese Journal of Aeronautics,2019,32(9):2211-2221. [83] ZITOUNE R,KRISHNARAJ V,COLLOMBET F,et al. Experimental and numerical analysis on drilling of carbon fibre reinforced plastic and aluminium stacks[J]. Composite Structures,2016,146:148-158. [84] QI Z C,GE E D,YANG J L,et al. Influence mechanism of multi-factor on the diameter of the stepped hole in the drilling of CFRP/Ti stacks[J]. International Journal of Advanced Manufacturing Technology,2021,113(3-4):923-933. [85] XIA R S,MAHDAVIAN S M. Experimental studies of step drills and establishment of empirical equations for the drilling process[J]. International Journal of Machine Tools and Manufacture,2005,45(2):235-240. [86] 刘书暖,晔宋,郭东林,等. CFRP/Ti叠层结构钻孔过渡域表面粗糙度演化机理[J]. 机械工程学报,2021,57(7):224-233. LIU Shunuan,YE Song,GUO Donglin,et al. Study on the surface roughness of transitional field in drilling CFRP/ Ti stacks[J]. Journal of Mechanical Engineering,2021,57(7):224-233. [87] HOCHENG H,TSAO C C. Comprehensive analysis of delamination in drilling of composite materials with various drill bits[J]. Journal of Materials Processing Technology,2003,140(1-3 SPEC.):335-339. [88] DURÃO L M P,GONÇALVES D J S,TAVARES J M R S,et al. Drilling tool geometry evaluation for reinforced composite laminates[J]. Composite Structures,2010,92(7):1545-1550. [89] LAZAR M B,XIROUCHAKIS P. Experimental analysis of drilling fiber reinforced composites[J]. International Journal of Machine Tools and Manufacture,2011,51(12):937-946. [90] HOCHENG H,TSAO C C. The path towards delamination-free drilling of composite materials[J]. Journal of Materials Processing Technology,2005,167: 251-264. [91] 王巍. CFRP加工工具研制及加工工艺研究[D]. 南京:南京航空航天大学,2013. WANG Wei. Development of the cutting tools for CFRP and research on machining technology[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2013. [92] SU F,ZHENG L,SUN F,et al. Novel drill bit based on the step-control scheme for reducing the CFRP delamination[J]. Journal of Materials Processing Technology,2018,157:157-167. [93] JIA Z Y,FU R,NIU B,et al. Novel drill structure for damage reduction in drilling CFRP composites[J]. International Journal of Machine Tools and Manufacture,2016,110:55-65. [94] HAO J X,WANG F J,ZHAO M,et al. Drill bit with clip-edges based on the force control model for reducing the CFRP damage[J]. Journal of Reinforced Plastics and Composites,2021,40:206-219. [95] SHU L,LI S,FANG Z,et al. Study on dedicated drill bit design for carbon fiber reinforced polymer drilling with improved cutting mechanism[J]. Composites Part A:Applied Science and Manufacturing,2021,142:106259. [96] YU Z,LI C,KURNIAWAN R,PARK K M,et al. Drill bit with a helical groove edge for clean drilling of carbon fiber-reinforced plastic[J]. Journal of Materials Processing Technology,2019,274(5):116291. [97] SUGITA N,SHU L,KIMURA K,et al. Dedicated drill design for reduction in burr and delamination during the drilling of composite materials[J]. CIRP Annals,2019, 68(1):89-92. [98] SENTHILKUMAR M,PRABUKARTHI A,KRISHN- ARAJ V. Machining of CFRP/Ti6Al4V stacks under minimal quantity lubricating condition[J]. Journal of Mechanical Science and Technology,2018,32(8):3787- 3796. [99] BENEZECH L,LANDON Y,RUBIO W. Study of manufacturing defects and tool geometry optimisation for multi-material stack drilling[J]. Advanced Materials Research,2012,423:1-11. [100] ZHU Z,GUO K,SUN J,et al. Evaluation of novel tool geometries in dry drilling aluminium 2024-T351/ titanium Ti6Al4V stack[J]. Journal of Materials Processing Technology,2018,259:270-281. [101] SHYHA I S,ASPINWALL D K,SOO S L,et al. Drill geometry and operating effects when cutting small diameter holes in CFRP[J]. International Journal of Machine Tools and Manufacture,2009,49(12-13):1008-1014. [102] SEGAWA S,TAMURA J,SUZUKI S,et al. Development of a drill bit for CFRP/Aluminum-alloy stack:To improve flexibility,economical efficiency and work environment[J]. SAE Technical Paper Series,2013,1:2227. [103] ALONSO U,CALAMAZ M,GIROT F,et al. Influence of flute number and stepped bit geometry when drilling CFRP/Ti6Al4V stacks[J]. Journal of Manufacturing Processes,2019,39:356-370. [104] TAMURA S,KONDO H,MATSUMURA T. B32 drilling of CFRP/Ti6A14V with step drills[C]// The Proceedings of The Manufacturing & Machine Tool Conference,2012:9. [105] JIA Z Y,ZHANG C,WANG F J,et al. An investigation of the effects of step drill geometry on drilling induced delamination and burr of Ti/CFRP stacks[J]. Composite Structures,2020,235:111786. [106] JIA Z Y,ZHANG C,WANG F J,et al. Multi-margin drill structure for improving hole quality and dimensional consistency in drilling Ti/CFRP stacks[J]. Journal of Materials Processing Technology,2020,276:116405. [107] WANG F J,ZHAO M,FU R,et al. Novel chip-breaking structure of step drill for drilling damage reduction on CFRP/Al stack[J]. Journal of Materials Processing Technology,2021,291:117033. [108] ZHAO M,WANG F J,FU R,et al. Drilling study on CFRP/Al stack with different CFRP thickness using chip-breaking step drill bit[J]. Journal of Manufacturing Processes,2023,90:300-309. [109] SAMSUDEENSADHAM S,KRISHNARAJ V. Drilling- induced damage suppression on CFRP/Ti-6Al-4V stacks using textured drills[J]. Materials and Manufacturing Processes,2024,39(11):1615-1629. [110] WANG F J,ZHAO M,FU R,et al. Replaceable drill bit with compound step and sawtooth structures for damages and drilling-cost reduction of CFRP composite[J]. Journal of Manufacturing Processes,2022,81:1018-1027. [111] KAYIHAN M,KARAGUZEL U,BAKKAL M. Process design and experimental study on drilling operations of a hybrid aluminum/carbon fiber reinforced polymer/titanium composite[J]. Materials and Manufacturing Processes,2024:1-8. [112] 刘书暖,夏文强,王宁,等. CFRP/Ti叠层构件钻孔工艺参数多目标优化方法[J]. 机械工程学报,2020,56(7):193-203. LIU Shunuan,XIA Wenqiang,WANG Ning,et al. Multi-obiective drilling parameters optimization method forCFRP/Ti stacks[J]. Journal of Mechanical Engineering,2020,56(7):193-203. [113] 马峰,黄顺虎,刘培基,等. 面向功率和制孔质量的CFRP钻削工艺参数多目标优化方法[J]. 机械工程学报,2023,59(11):290-299. MA Feng,HUANG Shunhu,LIU Peiji,et al. Multi-obiective optimization method of CFRP drilling process parametersfor power and driling quality[J]. Journal of Mechanical Engineering,2023,59(11):290-299. [114] GAITONDE V N,KARNIK S R,RUBIO J C,et al. Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites[J]. Journal of Materials Processing Technology,2008,203(1-3):431-438. [115] KARNIK S R,GAITONDE V N,RUBIO J C,et al. Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model[J]. Materials and Design,2008,29(9):1768-1776. [116] RAWAT S,ATTIA H. Characterization of the dry high speed drilling process of woven composites using machinability maps approach[J]. CIRP Annals - Manufacturing Technology,2009,58(1):105-108. [117] BHANDARI B,HONG Y S,YOON H S,et al. Development of a micro-drilling burr-control chart for PCB drilling[J]. Precision Engineering,2014,38(1):221-229. [118] KIM J,DORNFELD D A. Development of an analytical model for drilling burr formation in ductile materials[J]. Journal of Engineering Materials and Technology- Transactions of the ASME,2002,124(2):192-198. [119] DAHIBHATE R V,JAJU S B,SARODE R I. Inventive methods used to study and control thermal necrosis:A review[J]. Journal of Clinical and Diagnostic Research,2020. [120] YANG J A,JAGANATHAN V,DU R. A new dynamic model for drilling and reaming processes[J]. International Journal of Machine Tools and Manufacture,2002,42(2). [121] ASTAKHOV V P. Ecological machining:Near-dry machining[C]//Machining:Fundamentals and Recent Advances,2008. [122] XIA T. Investigation of drilling performance in cryogenic drilling on CFRP composite laminates[D]. Kentucky:Universtiy of Kentucky,2014. [123] MESHREKI M,DAMIR A,SADEK A,et al. Investigation of drilling of CFRP-aluminum stacks under different cooling modes[C]//Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. Volume 2:Advanced Manufacturing. Phoenix,Arizona,USA. November 11-17,2016. [124] WANG F J,QIAN B W,JIA Z Y,et al. Effects of cooling position on tool wear reduction of secondary cutting edge corner of one-shot drill bit in drilling CFRP[J]. International Journal of Advanced Manufacturing Technology,2018,94:4277-4287. [125] WANG F J,CHENG D,ZHANG B Y,et al. Reversed- Air cooling technology for high-quality drilling of CFRP[J]. Applied Composite Materials,2019,26(3):857-870. [126] XIA T,KAYNAK Y,ARVIN C. Cryogenic cooling- induced process performance and surface integrity in drilling CFRP composite material[J]. International Journal of Advanced Manufacturing Technology,2016,82:605-616. [127] SORBO N W,DIONNE J J. Dry drilling of stackup composite:Benefits of CO2 cooling[J]. SAE International Journal of Aerospace,2014,7(1):156-163. [128] RODRÍGUEZ A,CALLEJA A,LACALLE L N . Drilling of CFRP-Ti6Al4V stacks using CO2-cryogenic cooling[J]. Journal of Manufacturing Processes,2021,64:58-66. [129] FU R,JIA Z Y,WANG F J. Cooling process of reverse air suctioning for damage suppression in drilling CFRP composites[J]. Procedia CIRP,2019,85:147-152. [130] TANG L Y,LI P N,YU Z. New drilling method for damage reduction of CFRP/Ti stacks drilling[J]. International Journal of Advanced Manufacturing Technology,2021,115(1-2):595-602. [131] SEEHOLZER L,VOSS R,MARCHETTI L,et al. Experimental study:Comparison of conventional and low-frequency vibration-assisted drilling (LF-VAD) of CFRP/aluminium stacks[J]. International Journal of Advanced Manufacturing Technology,2019,104:433-449. [132] YING E,ZHOU Z,GENG D,et al. High-efficiency ultrasonic assisted drilling of CFRP/Ti stacks under non-separation type and dry conditions[J]. Journal of Zhejiang University:Science A,2024,25(4):275-291. [133] HUSSEIN R,SADEK A,ELBESTAWI M A,et al. Low-frequency vibration-assisted drilling of hybrid CFRP/Ti6Al4V stacked material[J]. International Journal of Advanced Manufacturing Technology,2018,98:2801-2817. [134] HUSSEIN R,SADEK A,ELBESTAWI M A,et al. An investigation into tool wear and hole quality during low-frequency vibration-assisted drilling of CFRP/ Ti6Al4V stack[J]. Journal of Manufacturing and Materials Processing,2019,3(3):63. [135] 王晨,李平,李莎,等. 纵扭超声振动辅助钻孔CFRP/ Ti叠层机理及性能研究[J]. 制造工艺学报,2023,92:453-465. WANG Chen,LI Ping,LI Sha,et al. Study on the mechanism and performance of longitudinal-torsional ultrasonic vibration assisted drilling CFRP/Ti stack[J]. Journal of Manufacturing Processes,2023,92:453-465. [136] JIAO F,LI Y,NIU Y,et al. A review on the drilling of CFRP/Ti stacks :Machining characteristics,damage mechanisms and suppression strategies at stack interface[J]. Composite Structures,2023,305(September 2022):116489. [137] XU J,LI C,CHEN M,et al. A comparison between vibration assisted and conventional drilling of CFRP/ Ti6Al4V stacks[J]. Materials and Manufacturing Processes,2019,34:1182-1193. [138] BLEICHER F,WIESINGER G,KUMPF C,et al. Vibration assisted drilling of CFRP/metal stacks at low frequencies and high amplitudes[J]. Production Engineering,2018,12(2):289-296. [139] LI C,XU J,CHEN M,et al. Tool wear processes in low frequency vibration assisted drilling of CFRP/Ti6Al4V stacks with forced air-cooling[J]. Wear,2019,426-427:1616-1623. [140] HAMRAN N N N,GHANI J A,RAMLI R,et al. A review on recent development of minimum quantity lubrication for sustainable machining[J]. Journal of Cleaner Production,2020,268:122165. [141] LI Y X,JIAO F,ZHANG Z Q,et al. Research on entrance delamination characteristics and damage suppression strategy in drilling CFRP/Ti6Al4V stacks[J]. Journal of Manufacturing Processes,2022,76:518-531. [142] LI Y,JIAO F,ZHANG S,et al. Experiment on high and low frequency compound vibration-assisted drilling of CFRP/titanium alloy laminated structure[J]. Acta Aeronautica et Astronautica Sinica,2021,42:344-357. [143] GE J,CHEN G,SU Y,et al. Effect of cooling strategies on performance and mechanism of helical milling of CFRP/Ti-6Al-4 V stacks[J]. Chinese Journal of Aeronautics,2022,35(2):388-403. [144] LI C,XU J,CHEN M,et al. Tool wear processes in low frequency vibration assisted drilling of CFRP/Ti6Al4V stacks with forced air-cooling[J]. Wear,2019,426:1616-1623. [145] CHEN D,LIN H,CHEN Y,et al. Wear behaviors of PCD and diamond-coated tools during low-frequency vibration-assisted drilling CFRP/Ti stacks[J]. International Journal of Advanced Manufacturing Technology,2023,128(1-2):595-609. |
[1] | 王福吉, 胡海波, 张博宇, 马建伟, 赵猛. 复合材料成型分层缺陷在钻削横刃挤压阶段的扩展行为[J]. 机械工程学报, 2019, 55(11): 197-204. |
[2] | 贾振元, 毕广健, 王福吉, 王小楠, 张博宇. 碳纤维增强树脂基复合材料切削机理研究[J]. 机械工程学报, 2018, 54(23): 199-208. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||