机械工程学报 ›› 2025, Vol. 61 ›› Issue (2): 181-197.doi: 10.3901/JME.2025.02.181
• 运载工程 • 上一篇
邓自刚1,2, 胡啸1,3, 王潇飞4, 李宗澎4, 张卫华1,2
收稿日期:
2024-01-06
修回日期:
2024-07-02
发布日期:
2025-02-26
作者简介:
邓自刚(通信作者),男,1982年出生,博士,研究员,博士研究生导师。主要从事高温超导磁悬浮与真空管道交通研究。E-mail:deng@swjtu.cn
基金资助:
DENG Zigang1,2, HU Xiao1,3, WANG Xiaofei4, LI Zongpeng4, ZHANG Weihua1,2
Received:
2024-01-06
Revised:
2024-07-02
Published:
2025-02-26
摘要: 作为一种新型交通系统,真空管道运输系统将悬浮列车技术和低气压管道技术相结合,理论上能够最大限度地减小列车高速运行时的摩擦阻力和气动阻力,有望突破地面轨道交通的速度极限,实现时速1 000 km及以上的超高速轨道交通。为了促进真空管道运输系统的发展,首先概述国内外真空管道交通试验平台建设的研究现状,包括美国、韩国以及中国等国家,目前最高的模型试验速度高达1 152 km/h;并重点分析了管内气动基础科学问题,从管内流动状态、气动载荷、管内复杂波系现象、气动热以及气动噪声5方面梳理管内气动特性研究进展,最后对真空管道交通的发展前景进行了探讨与展望,并指出精细化数值模拟方法、缓解或延迟流动雍塞的方法、适用于真空管道交通系统的散热途径、列车长时间运行时管道流场特征演化这几个方面是今后需要重点研究的气动基础问题。
中图分类号:
邓自刚, 胡啸, 王潇飞, 李宗澎, 张卫华. 真空管道磁浮交通试验平台建设及管内气动特性研究进展[J]. 机械工程学报, 2025, 61(2): 181-197.
DENG Zigang, HU Xiao, WANG Xiaofei, LI Zongpeng, ZHANG Weihua. Development of Evacuated Tube Maglev Transport Test Platform and Research Progress on Aerodynamic Characteristics inside the Tube[J]. Journal of Mechanical Engineering, 2025, 61(2): 181-197.
[1] 沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报,2005(2):133-137. SHEN Zhiyun. On developing high-speed evacuated tube transportation in China[J]. Journal of Southwest Jiaotong University,2005(2):133-137. [2] 熊嘉阳,沈志云. 中国高速铁路的崛起和今后的发展[J]. 交通运输工程学报,2021,21(5):6-29. XIONG Jiayang,SHEN Zhiyun. Rise and future development of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering,2021,21(5):6-29. [3] 陈南翼,张健. 高速列车空气阻力的研究[J]. 中国铁路,1998(2):43-47. CHEN Nanyi,ZHANG Jian. Research on air resistance of high-speed trains[J]. China Railway,1998(2):43-47. [4] GOEVERDEN K V,MILAKIS D,JANIC M,et al. Analysis and modelling of performances of the HL (Hyperloop) transport system[J]. European Transport Research Review,2018,54(5):1063-1072. [5] 邓自刚,张勇,王博,等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报,2019,54(5):1063-1072. DENG Zigang,ZHANG Yong,WANG Bo,et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University,2019,54(5):1063-1072. [6] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3):455-474,530. DENG Zigang,LIU Zongxin,LI Haitao,et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University,2022,57(3):455-474,530. [7] WANG J,ZHANG Y,HU X,et al. Aerodynamic characteristics of high-temperature superconducting maglev-evacuated tube transport[C]//2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE,2020:1-2. [8] MA T,WANG B,HU X,et al. Aerodynamic drag characteristics of the HTS maglev vehicle running in a low air-pressure tube[C]//2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE,2020:1-2. [9] 梅元贵,周朝晖,许建林. 高速列车隧道空气动力学[M]. 北京:科学出版社,2009. MEI Yuangui,ZHOU Zhaohui,XU Jianlin. Tunnel aerodynamics of high-speed trains[M]. Beijing:Science Press,2009. [10] 胡啸,余以正,陈然,等. 隧道内高速列车交会时车体两侧压差波动特性数值模拟研究[J]. 铁道机车车辆,2019,39(3):124-130. HU Xiao,YU Yizheng,CHEN Ran,et al. Numerical simulation study on the pressure difference fluctuation on both sides of car when high-speed trains crossing in tunnel[J]. Railway Locomotive and Car,2019,39(3):124-130. [11] 胡啸,孔繁冰,梁永廷,等. 线间距对高速列车隧道内交会压力波影响的数值模拟研究[J]. 振动与冲击,2020,39(21):79-88. HU Xiao,KONG Fanbing,LIANG Yongting,et al. Numerical simulation for influence of line spacing on crossing pressure wave of high-speed trains in tunnel[J]. Journal of Vibration and Shock,2020,39(21):79-88. [12] 胡啸. 开口型缓冲结构减缓高速磁浮列车驶入隧道时洞内外压力波动特性研究[D]. 兰州:兰州交通大学,2019. HU Xiao. Study on the alleviation of hood with multiple windows on pressure fluctuation characteristics inside and outside the tunnel induced by high speed maglev train passing through the tunnel[D]. Lanzhou:Lanzhou Jiaotong University,2019. [13] SEO Y,CHO M,KIM D H,et al. Experimental analysis of aerodynamic characteristics in the Hyperloop system[J]. Aerospace Science and Technology,2023,137:108265. [14] DENG Z,ZHANG W,ZHENG J,et al. A high-temperature superconducting maglev ring test line developed in Chengdu,China[J]. IEEE Transactions on Applied Superconductivity,2016,26(6):3602408. [15] DENG Z,ZHANG W,ZHENG J,et al. A high-temperature superconducting maglev-evacuated tube transport (HTS Maglev-ETT) test system[J]. IEEE Transactions on Applied Superconductivity,2017,27(6):3602008. [16] ZHOU D,CUI C,ZHAO L,et al. Running stability of a prototype vehicle in a side-suspended HTS maglev circular test track system[J]. IEEE Transactions on Applied Superconductivity,2017,27(1):3600107. [17] DENG Z,ZHANG W,WANG L,et al. A high-speed running test platform for high-temperature superconducting maglev[J]. IEEE Transactions on Applied Superconductivity,2022,32(4):3600905. [18] HUANG H,LI H,COOMBS T,et al. Advancements in Dynamic characteristics analysis of superconducting electrodynamic suspension systems:Modeling,experiment,and optimization[J]. Superconductivity,2024:100114. [19] 倪章松,张军,符澄,等. 磁浮飞行风洞试验技术及应用需求分析[J]. 空气动力学学报,2021,39(5):95-110. NI Zhangsong,ZHANG Jun,FU Cheng,et al. Analyses of the test techniques and applications of maglev flight tunnels[J]. Acta Aerodynamica Sinica,2021,39(5):95-110. [20] 于馨凝,姜欣彤,张军,等. 典型磁悬浮技术在磁浮飞行风洞中的应用分析[J]. 实验流体力学,2023,37(3):27-36. YU Xinning,JIANG Xintong,ZHANG Jun,et al. Application of typical magnetic suspension system in maglev flight wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2023,37(3):27-36. [21] 黄尊地,伊严严,常宁. 超声速运行时管道列车激波特性分析[J]. 真空,2022,59(5):55-62. HUANG Zundi,YI Yanyan,CHANG Ning. Analysis on shock wave characteristics of supersonic train running in tube[J]. Vacuum,2022,59(5):55-62. [22] YU Q,YANG X,NIU J,et al. Theoretical and numerical study of choking mechanism of fluid flow in Hyperloop system[J]. Aerospace Science and Technology,2022,121:107367. [23] SUI Y,NIU J,YU Q,et al. Numerical analysis of the aerothermodynamic behavior of a Hyperloop in choked flow[J]. Energy,2021,237:121427. [24] ZHOU Z,XIA C,DU X,et al. Impact of the isentropic and Kantrowitz limits on the aerodynamics of an evacuated tube transportation system[J]. Physics of Fluids,2022,34(6):066103. [25] KANTROWITZ A. Preliminary investigation of supersonic diffusers[M]. Washington:National Advisory Committee for Aeronautics,1945. [26] CHANG J,LI N,XU K,et al. Recent research progress on unstart mechanism,detection and control of hypersonic inlet[J]. Progress in Aerospace Sciences,2017,89:1-22. [27] ZHONG S,YANG M,QIAN B,et al. Temporal evolution of flow field structure for vehicles accelerating in evacuated tube transportation system[J]. Physics of Fluids,2023,35(2):025117. [28] 侯自豪,朱雨建,薄靖龙,等. 真空管道列车准一维气动特性[J]. 机械工程学报,2022,58(6):119-129. HOU Zihao,ZHU Yujian,BO Jinglong,et al. Quasi-one-dimensional aerodynamic characteristics of tube train[J]. Journal of Mechanical Engineering,2022,58(6):119-129. [29] HOU Z,ZHU Y,BO J,et al. A quasi-one-dimensional study on global characteristics of tube train flows[J]. Physics of Fluids,2022,34(2):026104. [30] LI T,SONG J,ZHANG X,et al. Theoretical and numerical studies on compressible flow around a subsonic evacuated tube train[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2022,236(15):8261-8271. [31] JANG K S,LE T T G,KIM J,et al. Effects of compressible flow phenomena on aerodynamic characteristics in Hyperloop system[J]. Aerospace Science and Technology,2021,117:106970. [32] OPGENOORD M M J,CAPLAN P C. Aerodynamic design of the hyperloop concept[J]. AIAA Journal,2018,56(11):4261-4270. [33] 余秋君,杨肖峰,牛纪强,等. 壅塞效应对低气压管道高速列车气动加热的影响[J]. 工程热物理学报,2022,43(1):211-218. YU Qiujun,YANG Xiaofeng,NIU Jiqiang,et al. Choking Effects on aerodynamic heating of high-speed train in the evacuated tube[J]. Journal of Engineering Thermophysics,2022,43(1):211-218. [34] 何德禄. 真空管道车辆抽吸系统减阻机理与能耗分析[D]. 长沙:湖南大学,2019. HE Delu. Drag reduction mechanism and energy consumption analysis of vacuum pipeline vehicle suction system[D]. Changsha:Hunan University,2019. [35] MUSK E. Hyperloop alpha [EB/OL]. [2023-03-05]. http://www.spacex.com/sites/spacex/files/hyperloop-alpha. pdf. [36] GALINDO J,DOLZ V,NAVARRO R,et al. Methodology for a numerical multidimensional optimization of a mixer coupled to a compressor for its integrationin a hyperloop vehicle[J]. Applied Sciences,2022,12(24):12795. [37] LLUESMA-RODRÍGUEZ F,GONZÁLEZ T,HOYAS S. CFD simulation of a hyperloop capsule inside a low-pressure environment using an aerodynamic compressor as propulsion and drag reduction method[J]. Applied Sciences,2021,11(9):3934. [38] BIZZOZERO M,SATO Y,SAYED M A. Aerodynamic study of a Hyperloop pod equipped with compressor to overcome the Kantrowitz limit[J]. Journal of Wind Engineering and Industrial Aerodynamics,2021,218:104784. [39] KANG H,JIN Y,KWON H,et al. A study on the aerodynamic drag of transonic vehicle in evacuated tube using computational fluid dynamics[J]. International Journal of Aeronautical and Space Sciences,2017,18(4):614-622. [40] LE T T G,JANG K S,LEE K S,et al. Numerical investigation of aerodynamic drag and pressure waves in hyperloop systems[J]. Mathematics,2020,8(11):1973. [41] OH J S,KANG T,HAM S,et al. Numerical analysis of aerodynamic characteristics of hyperloop system[J]. Energies,2019,12(3):518. [42] KIM T K,KIM K H,KWON H B. Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics,2011,99(12):1187-1196. [43] 黄尊地,梁习锋,常宁. 真空管道交通列车气动阻力数值分析[J]. 机械工程学报,2019,55(8):165-172. HUANG Zundi,LIANG Xifeng,CHANG Ning. Numerical analysis of train aerodynamic drag of vacuum tube traffic[J]. Journal of Mechanical Engineering,2019,55(8):165-172. [44] 刘加利,张继业,张卫华. 真空管道高速列车气动阻力及系统参数设计[J]. 真空科学与技术学报,2014,34(1):10-15. LIU Jiali,ZHANG Jiye,ZHANG Weihua. Impacts of pressure,blockage-ratio and speed on aerodynamic drag-force of high-speed trains[J]. Chinese Journal of Vacuum Science and Technology,2014,34(1):10-15. [45] 刘加利,张继业,张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报,2013,49(22):137-143. LIU Jiali,ZHANG Jiye,ZHANG Weihua. Analysis of aerodynamic characteristics of high-speed trains in the evacuated tube[J]. Journal of Mechanical Engineering,2013,49(22):137-143. [46] MA T,HU X,WANG J,et al. Effect of air pressure on aerodynamic characteristics of the HTS maglev running in a tube[J]. IEEE Transactions on Applied Superconductivity,2021,31(8):0501004. [47] SUI Y,NIU J,RICCO P,et al. Impact of vacuum degree on the aerodynamics of a high-speed train capsule running in a tube[J]. International Journal of Heat and Fluid Flow,2021,88:108752. [48] SUI Y,NIU J,YUAN Y,et al. An aerothermal study of influence of blockage ratio on a supersonic tube train system[J]. Journal of Thermal Science,2022,31:529-540. [49] LI T,ZHANG X,JIANG Y,et al. Numerical investigation of aerodynamic parameter design on subsonic evacuated tube train system[J]. Fluid Dynamics & Materials Processing,2020,16(1):121-130. [50] 米百刚,詹浩,朱军. 基于动网格的真空管道高速列车阻力计算方法研究[J]. 真空科学与技术学报,2013,33(9):877-882. MI Baigang,ZHAN Hao,ZHU Jun. Simulation of aerodynamic drag of high-speed train in evacuated tube transportation[J]. Chinese Journal of Vacuum Science and Technology,2013,33(9):877-882. [51] ZHOU K,DING G,WANG Y,et al. Aeroheating and aerodynamic performance of a transonic hyperloop pod with radial gap and axial channel:A contrastive study[J]. Journal of Wind Engineering and Industrial Aerodynamics,2021,212:104591. [52] 周晓. 真空管道运输高速列车空气阻力数值仿真[D]. 成都:西南交通大学,2008. ZHOU Xiao. Numerical simulation on aerodynamic drag of high-speed train of evacuated tube transportation system[D]. Chengdu:Southwest Jiaotong University,2008. [53] WANG P,WANG B,WANG J,et al. Influence of tube structure on the aerodynamic characteristics of HTS maglev vehicles[C]//2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE,2020:3603304. [54] WANG P,ZHANG Y,LIU Y,et al. Effects of tube structure on the aerodynamic characteristics of evacuated tube transport system[J]. IEEE Transactions on Applied Superconductivity,2021,31(8):3603304. [55] BRAUN J,SOUSA J,PEKARDAN C. Aerodynamic design and analysis of the hyperloop[J]. AIAA Journal,2017,55(12):4053-4060. [56] YANG Y,ZHANG H,HONG Z. Research on optimal design method for drag reduction of vacuum pipeline vehicle body[J]. International Journal of Computational Fluid Dynamics,2019,33(1-2):77-86. [57] KIM H,OH S. Shape optimization of a hyperloop pod’s head and tail using a multi-resolution morphing method[J]. International Journal of Mechanical Sciences,2022,223:107227. [58] 宋嘉源,李田,张继业,等. 管道断面外形对亚音速真空管道磁浮系统气动特性的影响[J]. 真空,2022,59(1):7-12. SONG Jiayuan,LI Tian,ZHANG Jiye,et al. Effect of tube cross-section shape on aerodynamic characteristics of subsonic evacuated tube maglev system[J]. Vacuum,2022,59(1):7-12. [59] HU X,DENG Z,ZHANG W. Effect of cross passage on aerodynamic characteristics of super-high-speed evacuated tube transportation[J]. Journal of Wind Engineering and Industrial Aerodynamics,2021,211:104562. [60] 黄尊地,常宁. 低真空管道列车表面压力变化规律研究[J]. 工程热物理学报,2022,43(2):376-383. HUANG Zundi,CHANG Ning. Research on surface pressure variation of train in low vacuum tube[J]. Journal of Engineering Thermophysics,2022,43(2):376-383. [61] 胡啸,马天昊,王潇飞,等. 真空管道磁浮交通车体热压载荷分布特征及其非定常特性[J]. 实验流体力学,2023,37(1):9-28. HU Xiao,MA Tianhao,WANG Xiaofei,et al. Distribution and unsteady characteristics of the temperature and pressure loads acting on the car-body in evacuated tube maglev transport[J]. Journal of Experiments in Fluid Mechanics,2023,37(1):9-28. [62] 强光林. 真空管道交通系统激波结构与活塞风特性研究[D]. 长沙:湖南大学,2021. QIANG Guanglin. Research on shock wave structure and piston wind characteristics of evacuated tube transportation[D]. Changshan:Hunan University,2021. [63] 周鹏,李田,张继业,等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报,2020,56(2):86-97. ZHOU Peng,LI Tian,ZHANG Jiye,et al. Research on shock wave trains generated by the hyper train in the evacuated tube[J]. Journal of Mechanical Engineering,2020,56(2):86-97. [64] ZHOU P,ZHANG J,LI T,et al. Numerical study on wave phenomena produced by the super high-speed evacuated tube maglev train[J]. Journal of Wind Engineering and Industrial Aerodynamics,2019,190:61-70. [65] ZHOU P,ZHANG J,LI T. Effects of blocking ratio and Mach number on aerodynamic characteristics of the evacuated tube train[J]. International Journal of Rail Transportation,2020,8(1):27-44. [66] NIU J,SUI Y,YU Q,et al. Numerical study on the impact of Mach number on the coupling effect of aerodynamic heating and aerodynamic pressure caused by a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics,2019,190:100-111. [67] 张晓涵,李田,张继业,等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报,2021,57(4):182-190. ZHANG Xiaohan,LI Tian,ZHANG Jiye,et al. Aerodynamic choked flow and shock wave phenomena of subsonic evacuated tube train[J]. Journal of Mechanical Engineering,2021,57(4):182-190. [68] HU X,DENG Z,ZHANG J,et al. Effect of tracks on the flow and heat transfer of supersonic evacuated tube maglev transportation[J]. Journal of Fluids and Structures,2021,107:103413. [69] 胡啸,马天昊,王潇飞,等. 真空管道磁浮交通气动特性的尺度效应[J]. 西南交通大学学报,2023,58(4):808-819. HU Xiao,MA Tianhao,WANG Xiaofei,et al. Scale effect of aerodynamic characteristics in evacuated tube maglev transport[J]. Journal of Southwest Jiaotong University,2023,58(4):808-819. [70] 王潇飞,胡啸,李宗澎,等. 轨道结构对真空管道磁浮列车气动特性的影响[J]. 实验流体力学,2023,37(3):9-18. WANG Xiaofei,HU Xiao,LI Zongpeng,et al. The effect of track structure on the aerodynamic characteristics of evacuated tube maglev train[J]. Journal of Experiments in Fluid Mechanics,2023,37(3):9-18. [71] ZHONG S,QIAN B,YANG M,et al. Investigation on flow field structure and aerodynamic load in vacuum tube transportation system[J]. Journal of Wind Engineering and Industrial Aerodynamics,2021,215:104681. [72] 胡啸,邓自刚,张银龙,等. 真空管道磁浮交通管内波系时空分布特征[J]. 空气动力学学报,2022,40(6):146-154. HU Xiao,DENG Zigang,ZHANG Yinlong,et al. Characteristics of spatial and temporal distribution of wave system in evacuated tube maglev transportation[J]. Acta Aerodynamica Sinica,2022,40(6):146-154. [73] BI H,WANG Z,WANG H,et al. Aerodynamic phenomena and drag of a maglev train running dynamically in a vacuum tube[J]. Physics of Fluids,2022,34(9):096111. [74] 胡啸. 真空管道交通多模式下波形/尾涡分布特征及其相互作用特性[D]. 成都:西南交通大学,2023. HU Xiao. Characteristics of wave system/trailing vortices distributions and their interaction in multi-mode evacuated tube transport[D]. Chengdu:Southwest Jiaotong University,2023. [75] HU X,DENG Z,ZHANG J,et al. Aerodynamic behaviors in supersonic evacuated tube transportation with different train nose lengths[J]. International Journal of Heat and Mass Transfer,2022,183:122130. [76] ZHANG X,JIANG Y,LI T. Effect of streamlined nose length on aerodynamic performance of 700 km/h evacuated tube train[J]. Fluid Dynamics & Materials Processing,2020,16(1):67-76. [77] LE T T G,KIM J,CHO M,et al. Effects of tail shapes/lengths of Hyperloop pod on aerodynamic characteristics and wave phenomenon[J]. Aerospace Science and Technology,2022,131:107962. [78] LE T T G,KIM J,JANG K S,et al. Numerical study on the influence of the nose and tail shape on the aerodynamic characteristics of a Hyperloop pod[J]. Aerospace Science and Technology,2022,121:107362. [79] KIM J,LE T T G,CHO M,et al. Theoretical and numerical analysis of effects of sudden expansion and contraction on compressible flow phenomena in Hyperloop system[J]. Aerospace Science and Technology,2022,126:107587. [80] ISLAYEM M,TARNINI M,JANAJREH I. Numerical analysis of two Hyperloop pods[J]. The International Journal of Thermal and Environmental Engineering,2022,19(2):63-68. [81] 伊严严,黄尊地,周镇斌,等. 二维管道列车交会激波特性分析[J]. 真空科学与技术学报,2023,43(4):350-360. YI Yanyan,HUANG Zundi,ZHOU Zhenbin,et al. Analysis on shock wave characteristics of two-dimensional rendezvous train in tube[J]. Chinese Journal of Vacuum Science and Technology,2023,43(4):350-360. [82] LE T T G,KIM J,JANG K S,et al. Numerical study of unsteady compressible flow induced by multiple pods operating in the Hyperloop system[J]. Journal of Wind Engineering & Industrial Aerodynamics,2022,226:105024. [83] MIRZA M O,ALI Z. Numerical analysis of aerodynamic characteristics of multi-pod hyperloop system[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2023,237(8):1727-1750. [84] 包世杰. 低真空管道高速磁浮列车气动热特性研究[D]. 成都:西南交通大学,2020. BAO Shijie. Study on aerodynamic heating characteristics of high-speed maglev train in low-vacuum tube[D]. Chengdu:Southwest Jiaotong University,2020. [85] YU Q,YANG X,NIU J,et al. Thermal effects on the wall surfaces of transonic evacuated tube maglev transportation[J]. Applied Thermal Engineering,2023,222:119876. [86] 周艳,刘海龙,刘英杰,等. 真空管道交通系统超音速状态下熵层的研究[J]. 真空科学与技术学报,2014,34(8):775-780. Zhou Yan,Liu Hailong,Liu Yingjie,et al. Simulation of entropy layer in evacuated tube transport at supersonic speed[J]. Chinese Journal of Vacuum Science and Technology,2014,34(8):775-780. [87] ZHOU P,ZHANG J. Aerothermal mechanisms induced by the super high-speed evacuated tube maglev train[J]. Vacuum,2020,173:109142. [88] 周鹏,李田,张继业,等. 真空管道超级列车气动热效应[J]. 机械工程学报,2020,56(8):190-199. ZHOU Peng,LI Tian,ZHANG Jiye,et al. Aerothermal effect generated by hyper train in the evacuated tube[J]. Journal of Mechanical Engineering,2020,56(8):190-199. [89] YU Q,YANG X,NIU J,et al. Aerodynamic thermal environment around transonic tube train in choked/unchoked flow[J]. International Journal of Heat and Fluid Flow,2021,92:108890. [90] WANG J,BAO S,HU X,et al. Numerical study on the influence of the speed on the aerodynamic thermal in the HTS maglev–evacuated tube transport system[J]. IEEE Transactions on Applied Superconductivity,2021,31(8):0500804. [91] 贾文广. 真空管道交通系统热动力学特性研究[D]. 青岛:青岛科技大学,2013. JIA Wenguang. The characteristics investigation of evacuated tube transport system on thermodynamics[D]. Qingdao:Qingdao University of Science and Technology,2013. [92] 张银龙,王潇飞,张琨,等. 不同阻塞比下真空管道磁浮交通气动热特性[J]. 真空科学与技术学报,2022,42(5):394-403. ZHANG Yinlong,WANG Xiaofei,ZHANG Kun,et al. Aerothermal characteristics of maglev transportation in evacuated tube with different blocking ratios[J]. Chinese Journal of Vacuum Science and Technology,2022,42(5):394-403. [93] 宋嘉源,李田,张晓涵,等. 亚声速真空管道磁浮系统气动热特性研究[J]. 空气动力学学报,2022,40(2):115-121. SONG Jiayuan,LI Tian,ZHANG Xiaohan,et al. Research on aerodynamic and thermal characteristics of subsonic evacuated tube maglev system[J]. Acta Aerodynamica Sinica,2022,40(2):115-121. [94] BAO S,HU X,WANG J,et al. Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system[J]. Advances in Aerodynamics,2020,2:28. [95] 周鹏,张军,李田,等. 初始环境温度对真空管道高速列车气动特性的影响[J]. 空气动力学学报,2021,39(5):181-190. ZHOU Peng,ZHANG Jun,LI Tian,et al. Effect of initial ambient temperature on aerodynamic characteristics of high-speed train in an evacuated tube[J]. Acta Aerodynamica Sinica,2021,39(5):181-190. [96] NIU J,SUI Y,YU Q,et al. Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube[J]. Aerospace Science and Technology,2020,105:105977. [97] NIU J,SUI Y,YU Q,et al. Comparative numerical study of aerodynamic heating and performance of transonic hyperloop pods with different noses[J]. Case Studies in Thermal Engineering,2022,29:101701. [98] ZHOU P,QIN D,ZHANG J Y,et al. Aerodynamic characteristics of the evacuated tube maglev train considering the suspension gap[J]. International Journal of Rail Transportation,2022,10(2):195-215. [99] 朱剑月,张清,徐凡斐,等. 高速列车气动噪声研究综述[J]. 交通运输工程学报,2021,21(3):39-56. ZHU Jianyue,ZHANG Qing,XU Fanfei,et al. Review of aerodynamic noise research of high-speed train[J]. Journal of Traffic and Transportation Engineering,2021,21(3):39-56. [100] 孙振旭,姚永芳,杨焱,等. 国内高速列车气动噪声研究进展概述[J]. 空气动力学学报,2018,36(3):385-397. SUN Zhenxu,YAO Yongfang,YANG Yan,et al. Overview of the research progress on aerodynamic noise of high speed trains in China[J]. Acta Aerodynamica Sinica,2018,36(3):385-397. [101] 丁叁叁,陈大伟,刘加利.中国高速列车研发与展望[J]. 力学学报,2021,53(1):35-50. DING Sansan,CHEN Dawei,LIU Jiali. Research,development and prospect of China high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(1):35-50. [102] 张克锐,李庆领,王传伟,等. 真空管道高速列车气动噪声研究[J]. 真空科学与技术学报,2019,39(11):950-957. ZHANG Kerui,LI Qingling,WANG Chuanwei,et al. Aerodynamic noises of vacuum tube transportation:a simulation and theoretical study[J]. Chinese Journal of Vacuum Science and Technology,2019,39(11):950-957. [103] 余杰. 低真空管道高温超导磁浮列车气动噪声特性研究[D]. 成都:西南交通大学,2020. YU Jie. Research On Aeroacoustic characteristics of HTS maglev train in low vacuum tube[D]. Chengdu:Southwest Jiaotong University,2020. [104] 刘加利,张继业,张卫华. 真空管道高速列车气动噪声源特性分析[J]. 真空科学与技术学报,2013,33(10):1026-1031. LIU Jiali,ZHANG Jiye,ZHANG Weihua. Simulation of noise source for high speed train in evacuated tube[J]. Chinese Journal of Vacuum Science and Technology, 2013,33(10):1026-1031. [105] LIU J,YU M,CHEN D,et al. Study on interior aerodynamic noise characteristics of the high-speed maglev train in the low vacuum tube[J]. Applied Sciences. 2022,12(22):11444. [106] 李倩. 600 km/h真空管高速列车车内气动噪声仿真分析[D]. 北京:北京交通大学,2019. LI Qian. Simulation of aerodynamic noise in 600 km/h vacuum tube high speed train[D]. Beijing:Beijing Jiaotong University,2019. |
[1] | 赵川, 孙凤, 金俊杰, 徐方超, 张明, OKA Koichi. 混合磁悬浮系统零功率抗偏载控制方法研究[J]. 机械工程学报, 2024, 60(8): 360-369. |
[2] | 孙文彪, 熊万里, 原帅, 曾旭, 汪剑. 磁化效应对高速磁悬浮外圆磨削电主轴回转精度影响规律研究[J]. 机械工程学报, 2024, 60(23): 236-245. |
[3] | 戴志远, 李田, 张卫华, 张继业. 不同海拔高度环境下高速列车气动特性研究[J]. 机械工程学报, 2024, 60(16): 291-305. |
[4] | 赵川, 孙凤, 裴文哲, 金俊杰, 徐方超, OKA Koichi, 于溯源. 永磁悬浮技术的实现机理与发展现状[J]. 机械工程学报, 2023, 59(17): 189-207. |
[5] | 马光同, 曾靖淞, 冯丕极, 闫兆盈, 张伟海. 超导电动磁悬浮列车次级悬挂混合阻尼半主动减振控制研究[J]. 机械工程学报, 2023, 59(10): 236-249. |
[6] | 侯自豪, 朱雨建, 薄靖龙, 杨基明. 真空管道列车准一维气动特性[J]. 机械工程学报, 2022, 58(6): 119-129. |
[7] | 朱志莹, 张巍, 朱海浪, 邵淋晶. 轴向永磁磁悬浮飞轮电机损耗计算与温度场分析*[J]. 电气工程学报, 2022, 17(4): 174-180. |
[8] | 黄尊地, 常宁. 基于非定常气动特性的高架动车组振动特性试验研究[J]. 机械工程学报, 2022, 58(24): 233-242. |
[9] | 欧阳智海, 康辉民, 刘厚才, 段良辉, 曹正, 周岳, 蒋冠, 李旺. 磁悬浮铣削电主轴转子-刀具变质量不平衡系统动态特性研究[J]. 机械工程学报, 2022, 58(23): 306-320. |
[10] | 李超, 谢振宇, 吴传响, 王一建. 磁悬浮轴承非定向差动控制方式研究[J]. 机械工程学报, 2022, 58(21): 161-170. |
[11] | 王心怡, 王俊元, 张易霖, 陈小明, 陶凯, 李运甲. 一种基于复杂永磁体阵列的悬浮式振动能量采集器的精确模型及验证[J]. 机械工程学报, 2022, 58(20): 128-136. |
[12] | 徐园平, 凌日旺, 周瑾, 金超武. 抗磁悬浮静电电机悬浮与驱动特性研究[J]. 机械工程学报, 2022, 58(19): 104-114. |
[13] | 陈志贤, 李忠继, 杨吉忠, 吴兴文, 周永礼. 常导高速电磁悬浮车辆二系悬挂结构对比优化[J]. 机械工程学报, 2022, 58(10): 160-168,179. |
[14] | 张晓涵, 李田, 张继业, 张卫华. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报, 2021, 57(4): 182-190. |
[15] | 竺志大, 王文军, 寇海江, 曾励, 戴敏, 张帆. 磁悬浮轴承多自由度转子系统的协同控制建模与仿真研究[J]. 机械工程学报, 2021, 57(17): 173-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||