• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (6): 119-129.doi: 10.3901/JME.2022.06.119

• 运载工程 • 上一篇    下一篇

扫码分享

真空管道列车准一维气动特性

侯自豪1, 朱雨建1, 薄靖龙2, 杨基明1   

  1. 1. 中国科学技术大学近代力学系 合肥 230027;
    2. 中国航天科工飞航技术研究院 北京 100074
  • 收稿日期:2021-04-01 修回日期:2021-10-30 出版日期:2022-03-20 发布日期:2022-05-19
  • 通讯作者: 朱雨建,男,1979年出生,高级工程师。主要研究方向为高速气体动力学、高速多相流、燃烧与爆轰。E-mail:yujianrd@ustc.edu.cn
  • 作者简介:侯自豪,男,1994年出生,博士研究生。主要研究方向为动高压原理、高速气体动力学。E-mail:houzihao@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11621202)。

Quasi-one-dimensional Aerodynamic Characteristics of Tube Train

HOU Zihao1, ZHU Yujian1, BO Jinglong2, YANG Jiming1   

  1. 1. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027;
    2. Institute of Aeronautical Technology, CASIC, Beijing 100074
  • Received:2021-04-01 Revised:2021-10-30 Online:2022-03-20 Published:2022-05-19

摘要: 采用理论分析和准一维数值模拟方法,对管道列车宏观流动和气动特性进行研究。研究表明,列车匀速运动可以产生亚声速通流、壅塞和超声速通流三种典型模态。其中,壅塞模态一般伴随以列车前驱激波和后方二次激波为特征的复杂流动。依据二次激波相对列车的位置,壅塞模态可细分为二次激波驻定和二次激波脱离两个区间。列车所受气动阻力随所处流动模态表现出不同的特征。当运行速度小于亚声速壅塞极限或者超过超声速壅塞极限时,流动处于通流模态,阻力较小;当运行速度介于亚声速壅塞极限与二次激波驻定极限之间时,阻力随列车速度快速增长;当运行速度介于二次激波驻定极限与超声速壅塞极限之间时,气动阻力增长趋缓。气动阻力系数在二次激波驻定极限处达到峰值。管壁的摩擦与传热会极大地削弱壅塞模态下的前驱激波和二次激波,但对壅塞极限和气动阻力的变化趋势影响不大。列车的加速过程可对超声速运行阶段流动模态的选择产生很大影响。减小加速度倾向于延缓由壅塞模态向低阻通流模态的转变。数值结果显示模态转变由列车在加速过程中追赶上前驱激波而触发。

关键词: 管道列车, 气动特性, 准一维模拟, 壅塞, 二次激波

Abstract: The overall flow induced by tube train and associated aerodynamic characteristics are investigated by theoretical analysis and quasi-one-dimensional numerical simulation. Three typical flow patterns, i.e. subsonic unchoked flow, choked flow and supersonic unchoked flow, are observed. The choked flow is generally accompanying with a precursor shock wave in front of the train and a secondary shock wave following the train. According to whether or not the secondary shock wave breaks away from the train, the choked flow may be further divided into two subcases. The aerodynamic drag on the train varies with the train speed and the trend differs by flow patterns. When the train speed is lower than the subsonic choking limit or higher than the supersonic choking limit, the flow is unchoked and the drag is small. When the train speed goes higher than the subsonic choking limit but under the secondary shock detaching limit, the flow becomes choked and the drag increases rapidly with the train speed. When the train speed exceeds the secondary shock detaching limit while lower than the supersonic choking limit, the flow remains choked and the drag increases mildly with the train speed. The drag coefficient peaks at the secondary shock detaching limit. Friction and heat transfer of the tube wall have a significant effect of attenuating the shock waves. But the overall influences of them on the transition limits of flow patterns and on the trend of drag are weak. Acceleration of train may influence the occurrence of two supersonic flow patterns. A smaller acceleration tends to delay the transition from choked flow to unchoked one. Numerical results indicates the transition of flow patterns during the acceleration is triggered by train overtaking the precursor shock wave.

Key words: tube train, aerodynamic characteristics, quasi-one-dimensional simulation, choked flow, secondary shock

中图分类号: