机械工程学报 ›› 2024, Vol. 60 ›› Issue (22): 385-402.doi: 10.3901/JME.2024.22.385
万步炎1, 彭奋飞1,2, 金永平1, 彭佑多1, 刘德顺1
收稿日期:
2024-02-06
修回日期:
2024-07-26
出版日期:
2024-11-20
发布日期:
2025-01-02
作者简介:
万步炎,男,1964年出生,博士,教授,博士研究生导师。主要研究方向为海洋资源勘探技术、海洋采矿技术与装备、自动化仪器仪表、固体物料管道输送技术(矿山充填技术)。E-mail:cimrwby@vip.sina.com;彭奋飞,男,1993年出生,博士研究生。主要研究方向为海洋资源勘探技术、海洋采矿技术与装备、机械系统动力学与控制。E-mail:fenfeipeng@163.com;金永平(通信作者),男,1984年出生,博士,教授,博士研究生导师。主要研究方向为海底作业机器人研发、海洋矿产资源探采装备与技术深渊海底生物、沉积物取样技术与装备研发、机械系统动力学与控制。E-mail:jinyongping@hnust.edu.cn;彭佑多,男,1964年出生,博士,教授,博士研究生导师。主要研究方向为资源装备(太阳能资源与海洋资源)开发设计理论与关键技术。E-mail:ydpeng@hnust.edu.cn;刘德顺,男,1962年出生,博士,教授,博士研究生导师。主要研究方向为机械系统动力学、风电装备和矿山与海洋装备。E-mail:liudeshun@hnust.edu
基金资助:
WAN Buyan1, PENG Fenfei1,2, JIN Yongping1, PENG Youduo1, LIU Deshun1
Received:
2024-02-06
Revised:
2024-07-26
Online:
2024-11-20
Published:
2025-01-02
About author:
10.3901/JME.2024.22.385
摘要: 海底钻探取芯是开展海洋地质及环境科学研究、进行海洋矿产资源勘探和海底工程地质勘察所必备的关键技术,而海底钻机是深海钻探最具发展潜力的技术装备。首先,对世界几种主要深海海底钻机的现有技术特点与钻探案例进行阐述;然后,分深海海底浅孔钻机、深海海底中深孔钻机、深海海底深孔钻机以及深海海底超深孔钻机四个阶段系统总结中国深海海底钻机技术特点和钻机钻探取芯应用情况;最后,分析深海海底钻机的发展趋势以及面临的挑战——将朝着超水深、超钻深、高品质和多功能四个方向发展,以及面临材料、密封、支撑、收放等四个方面的挑战。通过全面综述国内外深海海底钻机的技术特点以及钻探现状为后续深海海底钻机的设计及研究提供参考依据。
中图分类号:
万步炎, 彭奋飞, 金永平, 彭佑多, 刘德顺. 深海海底钻机钻探技术现状与发展趋势[J]. 机械工程学报, 2024, 60(22): 385-402.
WAN Buyan, PENG Fenfei, JIN Yongping, PENG Youduo, LIU Deshun. Drilling Technology Status and Development Trends of Deep-sea Seafloor Drill[J]. Journal of Mechanical Engineering, 2024, 60(22): 385-402.
[1] ZHONG H. Exploitation and utilization of marine resources and protection of marine ecology[C]// International Conference on Environment and Ocean Engineering,June7-9,2019,Xiamen,IOP Conference Series:Earth and Environmental Science,2019,369(1):012009. [2] MAESTRO-GONZÁLEZ A. The future of mining:The exploitation of marine geological resources as global commons[J]. Security in the Global Commons and Beyond,2021:51-68. [3] 邹丽,孙佳昭,孙哲,等. 我国深海矿产资源开发核心技术研究现状与展望[J]. 哈尔滨工程大学学报,2023,44(5):708-716. ZOU Li,SUN Jiazhao,SUN Zhe,et al. Deep-sea mining core technology in China:Current situation and prospects[J]. Journal of Harbin engineering University,2023,44(5):708-716. [4] REN Ziqiang,ZHOU Feng,ZHU Hai,et al. Analysis and research on mobile drilling rig for deep seabed shallow strata[J]. Marine Technology Society Journal,2021,55(2):81-93. [5] 金永平,万步炎,刘德顺. 深海海底钻机收放装置关键零部件可靠性分析与试验[J]. 机械工程学报,2019,55(8):183-191. JIN Yongping,WAN Buyan,LIU Deshun. Reliability analysis and experimental for key component of launch and recovery equipment of seafloor drill[J]. Journal of Mechanical Engineering,2019,55(8):183-191. [6] 刘德顺,金永平,万步炎,等. 深海矿产资源岩芯探测取样技术与装备发展历程与趋势[J]. 中国机械工程,2014,25(23):3255-3265. LIU Deshun,JIN Yongping,WAN Buyan,et al. Review and development trends of deep-sea mineral resource core sampling technology and equipment[J]. China Mechanical Engineering,2014,25(23):3255-3265. [7] 刘协鲁,陈云龙,张志伟,等. 海底多金属硫化物勘探取样技术与装备研究[J]. 地质装备,2019,20(5):28-30. LIU Xielu,CHEN Yunlong,ZHANG Zhiwei,et al. Research on sampling technology and equipment for submarine polymetallic sulfide exploration[J]. Equipment for Geotechnical Engineering,2019,20(5):28-30. [8] 杨红刚,王定亚,陈才虎,等. 海底勘探装备技术研究[J]. 石油机械,2013,41(12):58-62. YANG Honggang,WANG Dingya,CHEN Caihu,et al. Research on seabed exploration equipment[J]. China Petroleum Machinery,2013,41(12):58-62. [9] 赵义,蔡家品,阮海龙,等. 大洋科学钻探船综述[J]. 地质装备,2019,20(3):11-14. ZHAO Yi,CAI Jiapin,RUAN Hailong,et al. Overview of ocean scientific drilling vessels[J]. Equipment for Geotechnical Engineering,2019,20(3):11-14. [10] 李福建,王志伟,李阳,等. 大洋钻探船深海钻探作业模式分析[J]. 海洋工程装备与技术,2018,5(5):320-326. LI Fujian,WANG Zhiwei,LI Yang,et al. Technical analysis of deep-sea drilling operation modes for ocean drilling ship[J]. Ocean Engineering Equipment and Technology,2018,5(5):320-326. [11] 张汉泉,陈奇,万步炎,等. 海底钻机的国内外研究现状与发展趋势[J]. 湖南科技大学学报(自然科学版),2016,31(1):1-7. ZHANG Hanquan,CHEN Qi,WAN Buyan,et al. Current research and development trends of seabed drill rig[J]. Journal of Hunan University of Science and Technology,2016,31(1):1-7. [12] 王敏生,黄辉. 海底钻机及其研究进展[J]. 石油机械,2013,41(5):105-110. WANG Minsheng,HUANG Hui. Seafloor drilling rig and its research progress[J]. China Petroleum Machinery,2013,41(5):105-110. [13] 贾向锋,李亚伟,赵涛. 大洋钻探船钻探系统装备现状及总体配置研究[J]. 船舶,2023,34(5):67-76. JIA Xiangfeng,LI Yawei,ZHAO Tao. State-of-the-art and overall configuration of drilling system equipment for ocean drilling vessels[J]. Ship &Boat,2023,34(5):67-76. [14] FREUDENTHAL T,WEFER G. Shallow drilling in the deep sea:A new technological perspective for the next phase of scientific ocean drilling[C]//IODP New Ventures in Exploring Scientific Targets (INVEST) Conference, September 22-25,2009,Bremen,IODP,2009:1-6. [15] ISHIBASHI J,MIYOSHI Y,TANAKA K,et al. Pore fluid chemistry beneath active hydrothermal fields in the Mid-Okinawa Trough:Results of shallow drillings by BMS during TAIGA11 cruise[J]. Subseafloor Biosphere Linked to Hydrothermal Systems:TAIGA Concept,2015:535-560. [16] NAKAMURA K,SATO H,FRYER P,et al. Petrography and geochemistry of basement rocks drilled from Snail,Yamanaka,Archaean,and Pika Hydrothermal Vent Sites at the Southern Mariana Trough by benthic multi-coring system (BMS)[J]. Subseafloor Biosphere Linked to Hydrothermal Systems:TAIGA Concept,2015:507-533. [17] PHEASANT I,WILSON M,STEWART H A. British geological Survey remotely operated sea bed rockdrills and vibrocorers:New advances to meet the needs of the scientific community[C]// In:6th International Workshop on Marine Technology,September 15-17,2015,Cartagena,International Workshop on Marine Technology,2015,19-21. [18] EDMUNDS J,MACHIN J B,COWIE M. Development of the ROV-drill mk. 2 seabed push sampling,rotary coring and in-situ testing system[C]//Offshore Technology Conference,April 30-May 3,2012,Houston,Offshore Technology Conference,2012,OTC-23395-MS. [19] LUDVIGSEN M,AASLY K,ELLEFMO S,et al. ROV based drilling for deep sea mining exploration[C]//In OCEANS 2017-Aberdeen,June 19-22,2017,Aberdeen,IEEE,2017:1-6. [20] PAK S J,KIM H S. A case report on the sea-trial of the seabed drill system and its technical trend[J]. Economic and Environmental Geology,2016,49(6):479-490. [21] OCHI K,JACKSON E,HIRTZ H,et al. A new generation seafloor drill UNICORN-1[C]//OCEANS 2016 MTS/IEEE Monterey,September 19-23,2016,Monterey,IEEE,2016:1-9. [22] SOYLU S,HAMPTON P,CREES T,et al. Automation of CRD100 seafloor drill[C]//OCEANS 2016 MTS/IEEE Monterey,September 19-23,2016,Monterey,IEEE,2016:1-8. [23] DAVIES P J,WILLIAMSON M,FRAZER H,et al. The portable remotely operated drill[J]. The APPEA Journal,2000,40(1):522-530. [24] RYANG W H,KIM S P,HAHN J. Geoacoustic characteristics at the DH-2 long-core sediments in the Korean continental margin of the East Sea[C]//EGU General Assembly Conference Abstracts,April 12-17,2015,Vienna,2015:4524. [25] STEVENSON A,PHEASANT I,WILSON M,et al. British Geological Survey remotely operated sea bed rockdrills and Vibrocorers:New advances to meet the needs of the scientific community[C]//2014 AGU Fall Meeting,December 15-19,San Francisco,2014,AGU,2014. [26] FREUDENTHAL T. MeBo200-Entwicklung und Bau eines ferngesteuerten Bohrgerätes für Kernbohrungen am Meeresboden bis 200 m Bohrteufe,Schlussbericht[R]. Berichte aus dem MARUM und dem Fachbereich Geowissenschaften der Universität Bremen,2016,308:1-9. FREUDENTHAL T. MeBo200 development and construction of a remote controlled drilling rig for core drilling at the seabed up to 200 m deep,final report[R]. Reports from MARUM and the Department of Geosciences of the University of Bremen,2016,308:1-9. [27] RIEDEL M,FREUDENTHAL T,BIALAS J,et al. In-situ borehole temperature measurements confirm dynamics of the gas hydrate stability zone at the upper Danube Deep-Sea Fan,Black Sea[J]. Earth and Planetary Science Letters,2021,563:116869. [28] BOHRMANN G,AHRLICH F,BACHMANN K,et al. R/V METEOR cruise report M142,drilling gas hydrates in the Danube Deep-Sea Fan,Black Sea,Varna-Varna- Varna,04 November-22 November-09 December 2017[R]. MARUM-Zentrum für Marine Umweltwissenschaften,Fachbereich Geowissenschaften,Universitäauml;t Bremen,2018,320:1-121. [29] SPAGNOLI G,FREUDENTHAL T,STRASSER M,et al. Development and possible applications of Mebo200 for geotechnical investigations for the underwater mining[C]// Offshore Technology Conference,May,2014,Houston,OTC,2014:D021S027R006. [30] 万步炎,黄筱军. 深海浅地层岩芯取样钻机的研制[J]. 矿业研究与开发,2006,(S1):49-51,130. WAN Buyan,HUANG Xiaojun. Development of core sampling drill for deep seabed shallow strata[J]. Mining Research and Development,2006,(S1):49-51,130. [31] WAN B,ZHANG G,HUANG X. Research and development of seafloor shallow-hole multi-coring drill[C]//The Twentieth International Offshore and Polar Engineering Conference,June 20-25,2010,Beijing,OnePetro,2010,ISOPE-I-10-237. [32] 任玉刚,刘延俊,丁忠军,等. 基于深海运载器的小型岩芯取样钻机发展现状分析[J]. 海洋技术学报,2019,38(3):92-99. REN Yugang,LIU Yanjun,DING Zhongjun,et al. Analysis on the development status of small core sampling drill based on deep-sea vehicles[J]. Journal of Ocean Technology,2019,38(3):92-99. [33] 朱伟亚,万步炎,黄筱军,等. 深海底中深孔岩芯取样钻机的研制[J]. 中国工程机械学报,2016,14(1):38-43. ZHU Weiya,WAN Buyan,HUANG Xiaojun,et al. Research and development on medium-and deep-hole core-sampling drills for abyss seafloor[J]. Chinese Journal of Construction Machinery,2016,14(1):38-43. [34] 中国科学院海斗深渊前沿科技问题研究与攻关战略性先导科技专项研究团队. 开启深渊之门——海斗深渊前沿科技问题研究与攻关先导科技专项进展[J]. 中国科学院刊,2016,31(9):1105-1111,969. Team of strategic priority program of on frontier study on hadal science and technology institute of deep-sea science and engineering,Chinese Academy of Sciences. Open a door to the hadal trenches—Progress on frontier study on hadal science and technology[J]. Bulletin of Chinese Academy of Sciences,2016,31(9):1105-1111,969. [35] 刘健. 我国海洋钻机设备发展路径研究[J]. 中国工程科学,2020,22(6):40-48. LIU Jian. Development path of offshore drilling equipment in China[J]. Strategic Study of CAE,2020,22(6):40-48. [36] 刘峰,刘予,宋成兵,等. 中国深海大洋事业跨越发展的三十年[J]. 中国有色金属学报,2021,31(10):2613-2623. LIU Feng,LIU Yu,SONG Chengbing,et al. Three decades’ development of China in deep-sea field[J]. The Chinese Journal of Nonferrous Metals,2021,31(10):2613-2623. [37] 付亚荣. 可燃冰研究现状及商业化开采瓶颈[J]. 石油钻采工艺,2018,40(1):68-80. FU Yarong. Research status of combustible ice and the bottleneck of its commercial exploitation[J]. Oil Drilling & Production Technology,2018,40(1):68-80. [38] 林玉鑫,张京业. 海上风电的发展现状与前景展望[J]. 分布式能源,2023,8(2):1-10. LIN Yuxin,ZHANG Jinye. Development status and prospect of offshore wind power[J]. Distributed Energy,2023,8(2):1-10. [39] 周守为,李清平. 开发海洋能源,建设海洋强国[J]. 科技导报,2020,38(14):17-26. ZHOU Shouwei,LI Qingping. Developing marine energy and building a marine power[J]. Science & Technology Review,2020,38(14):17-26. [40] 石学法,符亚洲,李兵,等. 我国深海矿产研究:进展与发现(2011—2020)[J]. 矿物岩石地球化学通报,2021,40(2):305-318,517. SHI Xuefa,FU Yazhou,LI Bing,et al. Research on deep-sea minerals in China:Progress and discovery (2011— 2020)[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2021,40(2):305-318,517. [41] 张伙带,朱本铎,任江波. 国际海底稀土资源勘查进展[J]. 矿床地质,2014,33(S1):1141-1142. ZHANG Huodai,ZHU Benze,REN Jiangbo. Progress of international seabed rare earth resources exploration[J]. Mineral Deposits,2014,33(S1):1141-1142. [42] 黄牧,石学法,毕东杰,等. 深海稀土资源勘查开发研究进展[J]. 中国有色金属学报,2021,31(10):2665-2681. HUANG Mu,SHI Xuefa,BI Dongjie,et al. Advances on study of exploration and development of deep-sea rare earth resources[J]. The Chinese Journal of Nonferrous Metals,2021,31(10):2665-2681. [43] 李红有,吴永祥,周全智,等. 我国海上风电场地质勘察问题及对策[J]. 船舶工程,2019,41(S1):399-402. LI Hongyou,WU Yongxiang,ZHOU Quanzhi,et al. Geological survey problems and countermeasures of domestic offshore wind farms[J]. Ship Engineering,2019,41(S1):399-402. [44] 汤晓勇,陈俊文,郭艳林,等. 可燃冰开发及试采技术发展现状综述[J]. 天然气与石油,2020,38(1):7-15. TANG Xiaoyong,CHEN Junwen,GUO Yanlin,et al. Development status of combustible ice mining and test production technologies[J]. Natural Gas and Oil,2020,38(1):7-15. [45] 王兆明,温志新,贺正军,等. 全球近10年油气勘探新进展特点与启示[J]. 中国石油勘探,2022,27(2):27-37. WANG Zhaoming,WEN Zhixin,HE Zhengjun,et al. Characteristics and enlightenment of new progress in global oil and gas exploration in recent ten years[J]. China Petroleum Exploration,2022,27(2):27-37. [46] 刘协鲁,陈云龙,阮海龙,等. 保压取样技术应用现状综述[J]. 地质装备,2021,22(6):9-13. LIU Xielu,CHEN Yunlong,RUAN Hailong,et al. Overview on the application status of pressure-holding sampling technology[J]. Equipment for Geotechnical Engineering,2021,22(6):9-13. [47] JACOBS P H. A new rechargeable dialysis pore water sampler for monitoring sub-aqueous in-situ sediment caps[J]. Water Research,2002,36(12):3121-3129. [48] 尹衍升. 深海及深海热液区环境服役装备与材料多因素耦合腐蚀研究现状与趋势[J]. 广州航海学院学报,2020,28(1):1-9. YIN Yansheng. Research status and trends on the multi-factor coupling corrosion mechanism for deep sea and deep-sea hydrothermal area environmental service equipment and materials[J]. Journal of Guangzhou Maritime University,2020,28(1):1-9. [49] 刘协鲁,阮海龙,赵义,等. 海域天然气水合物保温保压取样钻具研究与应用进展[J]. 钻探工程,2021,48(7):33-39. LIU Xielu,RUAN Hailong,ZHAO Yi,et al. Progress in research and application of the pressure-temperature core sampler for marine natural gas hydrate[J]. Drilling Engineering,2021,48(7):33-39. [50] 刘乐乐,刘昌岭,吴能友,等. 天然气水合物储层岩心保压转移与测试进展[J]. 地质通报,2021,40(Z1):408-422. LIU Lele,LIU Changling,WU Nengyou,et al. Advances in pressure core transfer and testing technology of offshore hydrate-bearing sediments[J]. Geological Bulletin of China,2021,40(Z1):408-422. [51] 任红. 南海天然气水合物取样技术现状及发展建议[J]. 石油钻探技术,2020,48(4):89-93. REN Hong. Current status and development recommendations for gas hydrate sampling technology in the South China Sea[J]. Petroleum Drilling Techniques,2020,48(4):89-93. [52] 刘勇,程谦,吴德发,等. 全海深环境模拟实验台的研制[J]. 液压与气动,2020,348(8):7-11. LIU Yong,CHENG Qian,WU Defa,et al. Development of an experiment device for simulating full depth ocean environment[J]. Chinese Hydraulics & Pneumatics,2020,348(8):7-11. [53] 林晓冬,马海滨,任啟森,等. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报,2022,58(12):1611-1622. LIN Xiaodong,MA Haibin,REN Qisen,et al. Corrosion behaviors of Fe13Cr5Al4Mo alloy in high-temperature high-pressure water environments[J]. Acta Metallurgica Sinica,2022,58(12):1611-1622. [54] WANG Y,WANG B,HE S,et al. Unraveling the effect of H2S on the corrosion behavior of high strength sulfur-resistant steel in CO2/H2S/Cl−Environments at ultra high temperature and high pressure[J]. Journal of Natural Gas Science and Engineering,2022,100:104477. [55] CHEN W T,LI B,GALETZ M,et al. STEM characterization of metal dusting corrosion in Ni-based alloy 600 and Fe-based alloy 800H exposed to a high- pressure environment[J]. Microscopy and Microanalysis,2019,25(S2):2332-2333. [56] 路增荣. 深海钻探取样钻杆螺纹接头优化研究[D]. 青岛:中国石油大学(华东),2015. LU Zengrong. Drill pipe thread joint research and optimization for deep-sea drilling and sampling[D]. Qingdao:China University of Petroleum (East China),2015. [57] 吴凤民,王江涛,张永康,等. 深海用铝合金海工钻杆抗电化学腐蚀性能的研究[J]. 机电工程技术,2021,50(2):30-32,75. WU Fengmin,WANG Jiangtao,ZHANG Yongkang,et al. Research of electrochemical corrosion performance of aluminum alloy offshore drill served in deep ocean[J]. Mechanical & Electrical Engineering Technology,2021,50(2):30-32,75. [58] 杨生晨. 基于深海钻探的TC27钛合金钻杆的性能研究[D]. 青岛:中国石油大学(北京),2018. YANG Shengchen. Research on performance of TC27 titanium alloy drill pipe-based on deep sea drilling[D]. Qingdao:China University of Petroleum (Beijing),2018. [59] 屈少鹏,尹衍升. 深海极端环境服役材料的研究现状与研发趋势[J]. 材料科学与工艺,2019,27(1):1-8. QU Shaopeng,YIN Yansheng. Research status and development trend of service materials in deep sea extreme environment[J]. Materials Science and Technology,2019,27(1):1-8. [60] 彭奋飞,王佳亮,万步炎,等. 适用于海底钻机的保压绳索取心钻具设计[J]. 钻探工程,2021,48(4):97-103. PENG Fenfei,WANG Jialiang,WAN Buyan,et al. Desian of the nressure-coring tool for underwater drilling rig[J]. Drilling Engineering,2021,48(4):97-103. [61] 金永平,易攀,彭佑多,等. 海高压环境下往复运动组合密封结构的密封性能研究(英文)[J]. Marine Science Bulletin,2019,21(2):36-56. JIN Yongping,YI Pan,PENG Youduo,et al. Analysis of the sealing performance of combined sealing structure under deep-sea high pressure environment[J]. Marine Science Bulletin,2019,21(2):36-56. [62] 刘银水,吴德发,李东林,等. 深海液压技术应用与研究进展[J]. 机械工程学报,2018,54(20):14-23. LIU Yinshui,WU Defa,LI Donglin,et al. Applications and research progress of hydraulic technology in deep sea[J]. Journal of Mechanical Engineering,2018,54(20):14-23. [63] 陶幸珍,冀改萍,张莹莹,等. 深海贯入装置液压单元研究[J]. 液压与气动,2019,337(9):24-28. TAO Xingzhen,JI Gaiping,ZHANG Yingying,et al. Research on hydraulic unit of deep-sea penetration device[J]. Chinese Hydraulics & Pneumatics,2019,337(9):24-28. [64] 曹学鹏,王凯丽,曹皓清,等. 变深下环境适应性液压源的性能研究[J]. 液压与气动,2018,327(11):18-23. CAO Xuepeng,WANG Kaili,CAO Haoqing,et al. Performance research of environment-adapted hydraulic power under different ocean-depths[J]. Chinese Hydraulics & Pneumatics,2018,327(11):18-23. [65] 周怀瑾. 深海海底超深孔钻机支撑系统分析与试验研究[D]. 湘潭:湖南科技大学,2020. ZHOU Huaijin. Analysis and experimental study on support system of super-long-hole seafloor drill[D]. Xiangtan:Hunan University of Science and Technology,2020. [66] 刘伟. 海底钻机自动调平系统研究[D]. 武汉:中国地质大学,2012. LIU Wei. Research on automatic leveling system for seabed drilling[D]. Wuhan:China University of Geosciences,2012. [67] 王海龙,张奇峰,全伟才,等. 全海深ROV非金属铠装脐带缆动力学性能研究[J]. 高技术通讯,2021,31(12):1293-1302. WANG Hailong,ZHANG Qifeng,QUAN Weicai,et al. Research on dynamic characteristics of the non-metal armored umbilical cable for full ocean depth ROV[J]. Chinese High Technology Letters,2021,31(12):1293-1302. [68] QUAN W,LIU Y,ZHANG A,et al. The nonlinear finite element modeling and performance analysis of the passive heave compensation system for the deep-sea tethered ROVs[J]. Ocean Engineering,2016,127:246-257. |
[1] | 刘鹏, 金永平, 刘德顺, 万步炎. 深海海底钻机硬着底动力学建模与分析[J]. 机械工程学报, 2023, 59(23): 146-157. |
[2] | 康娅娟, 刘少军. 深海采矿技术与装备研究进展及系统方案综述[J]. 机械工程学报, 2023, 59(20): 325-337. |
[3] | 于培师, 赵宇翔, 吴连生, 卞家坤, 赵军华, 郭万林. TC4ELI钛合金疲劳裂纹路径偏折与寿命提升机制[J]. 机械工程学报, 2023, 59(16): 72-81. |
[4] | 王欣, 张建, 狄陈阳, 王芳. 椭圆截面环形耐压壳屈曲特性研究[J]. 机械工程学报, 2022, 58(5): 144-150. |
[5] | 康娅娟, 刘少军, 姜永明. 多级深海输送电泵叶轮径向不平衡力研究[J]. 机械工程学报, 2021, 57(22): 406-415. |
[6] | 康娅娟, 刘少军. 深海采矿提升系统研究综述[J]. 机械工程学报, 2021, 57(20): 232-243. |
[7] | 刘少军, 李渊文, 胡小舟. 基于DEM-CFD颗粒体积分数对深海扬矿电泵工作性能的影响[J]. 机械工程学报, 2020, 56(10): 257-264. |
[8] | 金永平, 万步炎, 刘德顺. 深海海底钻机收放装置关键零部件可靠性分析与试验[J]. 机械工程学报, 2019, 55(8): 183-191. |
[9] | 徐海良, 徐聪, 曾义聪, 吴波. 固相浓度对深海采矿矿浆泵空化性能影响规律[J]. 机械工程学报, 2019, 55(8): 201-207. |
[10] | 栾新, 乜云利, 李坤乾, 姜迁里, 周丽芹. 6 km自容式湍流观测剖面仪设计与试验研究[J]. 机械工程学报, 2019, 55(20): 231-239. |
[11] | 金永平, 万步炎, 刘德顺, 彭佑多, 郭勇. 深海海底钻机收放系统动力学随机数值仿真方法研究[J]. 机械工程学报, 2018, 54(23): 112-120. |
[12] | 刘银水, 吴德发, 李东林, 邓亦攀. 深海液压技术应用与研究进展[J]. 机械工程学报, 2018, 54(20): 14-23. |
[13] | 戴瑜, 张健, 张滔, 刘少军. 基于多体动力学模型集成的深海采矿系统联动仿真*[J]. 机械工程学报, 2017, 53(4): 155-160. |
[14] | 张滔, 戴瑜, 刘少军, 陈君, 黄中华. 深海履带式集矿机多体动力学建模与行走性能仿真分析[J]. 机械工程学报, 2015, 51(6): 173-180. |
[15] | 刘银水;吴德发;李东林;赵旭峰;李晓晖. 海水液压技术在深海装备中的应用[J]. , 2014, 50(2): 28-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||