[1] "中国工程科技2035发展战略研究"海洋领域课题组. 中国海洋工程科技2035发展战略研究[J]. 中国工程科学, 2017, 19(1):108-117. Marine Research Group of "2035 Development Strategy Study of China Engineering Science and Technology". Development strategy for China's marine engineering science and technology to 2035[J]. Strategic Study of Chinese Academy of Engineering, 2017, 19(1):108-117. [2] 吴有生,曾晓光,徐晓丽,等. 海洋运载装备技术与产业发展研究[J]. 中国工程科学, 2020, 22(6):10-18. WU Yousheng, ZENG Xiaoguang, XU Xiaoli, et al. Technology and industry development of marine transportation equipment[J]. Strategic Study of Chinese Academy of Engineering, 2020, 22(6):10-18. [3] 中国科学院为中国载人深潜科技创新树立了典范-从"蛟龙"、"深海勇士"到"奋斗者"[J]. 科技促进发展, 2020, 16(12):1482-1483. The Chinese Academy of Sciences has set a model for China's manned deep-sea technological innovation:From "Jiaolong" to "Deep-sea warrior" to "Striver"[J]. Science & Technology for Development, 2020, 16(12):1482-1483. [4] 夏申琳, 王刚, 杨晓, 等. 钛及钛合金在船舶中的应用[J]. 金属加工(冷加工), 2016(19):40-41. XIA Shenlin, WANG Gang, YANG Xiao, et al. Application of titanium and titanium alloys to ships[J]. Metal Working(Metal Cutting), 2016(19):40-41. [5] 冯雅奇, 贾栓孝, 王韦琪, 等. 深潜器载人舱用TC4ELI钛合金半球壳的研制[J]. 钛工业进展, 2016, 33(1):19-22. FENG Yaqi, JIA Shuanxiao, WANG Weiqi, et al. Development of TC4 ELI titanium alloy hemisphere shell for manned submersible[J]. Titanium Industry Progress, 2016, 33(1):19-22. [6] 王芳,王莹莹,崔维成. 高强度钛合金深潜器载人舱在三种不同类型载荷下的裂纹扩展预报[J]. 船舶力学, 2016, 20(6):999-1009. WANG Fang, WANG Yingying, CUI Weicheng. Prediction of crack growth rates of a high strength titanium alloy for deep sea pressure hull under three loading patterns[J]. Journal of Ship Mechanics, 2016, 20(6):999-1009. [7] 王莹莹,王芳,崔维成. 基于统一的疲劳寿命预报方法(UFLP)的深潜器载人舱疲劳可靠性分析[J]. 船舶力学, 2016, 20(3):335-347. WANG Yingying, WANG Fang, CUI Weicheng. Fatigue reliability analysis for the manned cabin of deep manned submersibles based on the unified fatigue life prediction method[J]. Journal of Ship Mechanics, 2016, 20(3):335-347. [8] 吴连生, 于培师, 韦朋余, 等. 基于三维理论的TC4ELI钛合金疲劳裂纹扩展研究[J]. 船舶力学, 2022, 26(9):1354-1362. WU Liansheng, YU Peishi, WEI Pengyu, et al. Study on fatigue crack growth of TC4ELI titanium alloy based on three-dimensional theory[J]. Journal of Ship Mechanics, 2022, 26(9):1354-1362. [9] JESUS J S, BORREGO L P, FERREIRA J A M, et al. Fatigue crack growth behaviour in Ti6Al4V alloy specimens produced by selective laser melting[J]. International Journal of Fracture, 2020(123-133):223. [10] VANSICKLE R, FOEHRING D, CHEW H B, et al. Microstructure effects on fatigue crack growth in additively manufactured Ti-6Al-4V[J]. Materials Science and Engineering:A, 2020, 795:139993. [11] 张亚军,吕逸帆. TC4ELI合金的断裂韧性试验研究[J]. 材料开发与应用, 2012, 27(2):14-17. ZHANG Yajun, LÜ Yifan. Study on fracture toughness test of TC4ELI alloy[J]. Development and Application of Materials, 2012, 27(2):14-17. [12] WU Z, KOU H, TANG L, et al. Microstructural effects on the high-cycle fatigue and fracture behaviors of Ti-6Al-4V alloy[J]. Engineering Fracture Mechanics, 2020, 235:107129. [13] BISWAS N, DING J L. Numerical study of the deformation and fracture behavior of porous Ti6Al4V alloy under static and dynamic loading[J]. International Journal of Impact Engineering, 2015, 82:89-102. [14] 马英杰,刘建荣,雷家峰,等. TC4ELI合金疲劳裂纹尖端塑性区对裂纹扩展的影响[J]. 中国有色金属学报, 2009, 19(10):1789-1794. MA Yingjie, LIU Jianrong, LEI Jiafeng, et al. Influence of fatigue crack tip plastic zone on crack propagation behavior in TC4ELI alloy[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(10):1789-1794. [15] 郭萍. TC4-DT钛合金不同片层结构疲劳裂纹扩展行为研究[J]. 稀有金属材料与工程, 2015, 44(2):277-281. GUO Ping. Fatigue crack growth behavior in TC4-DT titanium alloy with different lamellar microstructures[J]. Rare Metal Materials and Engineering, 2015, 44(2):277-281. [16] 郭萍,赵永庆,洪权,等. TC4-DT钛合金疲劳裂纹扩展的微观机制[J]. 材料导报, 2019, 33(20):3448-3451. GUO Ping, ZHAO Yongqing, HONG Quan, et al. Microscopic mechanism of fatigue crack propagation in TC4-DT titanium alloy[J]. Materials Review, 2019, 33(20):3448-3451. [17] LI W, LI M, SUN R, et al. Faceted crack induced failure behavior and micro-crack growth based strength evaluation of titanium alloys under very high cycle fatigue[J]. International Journal of Fatigue, 2020, 131:105369. [18] WANG K, BAO R, ZHANG T, et al. Fatigue crack branching in laser melting deposited Ti-55511 alloy[J]. International Journal of Fatigue, 2019, 124:217-226. [19] ZENG X, WEI Y. The effective fracture strength and fracture toughness of solids with energy dissipation confined to localized strips[J]. International Journal of Plasticity, 2019, 120:47-63. [20] 于培师,赵军华,郭万林. 三维损伤容限设计:离面约束理论与疲劳断裂准则[J]. 机械工程学报, 2021, 57(16):87-105. YU Peishi, ZHAO Junhua, GUO Wanlin, et al. Three-dimensional damage tolerance design:Out-of-plane constraint theory and fatigue/fracture criteria[J]. Journal of Mechanical Engineering, 2021, 57(16):87-105. [21] LIU Z E, WEI Y. An analytical solution to the stress fields of kinked cracks[J]. Journal of the Mechanics and Physics of Solids, 2021, 156:104619. |