• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (21): 365-377.doi: 10.3901/JME.2024.21.365

• 制造工艺与装备 • 上一篇    下一篇

扫码分享

考虑刀具跳动的可转位面铣刀运动学分析与铣削力模型

刘德伟1, 李长河1, 秦爱国2, 刘波3, 陈云4, 张彦彬1   

  1. 1. 青岛理工大学机械与汽车工程学院 青岛 266520;
    2. 青岛卡沃斯智能制造有限公司 青岛 266109;
    3. 四川新航钛科技有限公司 什邡 618400;
    4. 成都工具研究所有限公司 成都 610500
  • 收稿日期:2023-12-01 修回日期:2024-04-19 发布日期:2024-12-24
  • 通讯作者: 李长河,男,1966年出生,博士,教授,博士研究生导师。主要研究方向为智能与洁净精密制造。E-mail:sy_lichanghe@163.com
  • 作者简介:刘德伟,男,1997年出生,博士研究生。主要研究方向为智能与精密制造。E-mail:Liudw_qd@163.com
  • 基金资助:
    基础科研(JCKY2021208B046)、转化应用(D44F9A65,2B0188E1)和内蒙古重点研发(2022YFHH0121)资助项目。

Kinematic Analysis and Milling Force Model for Disc Milling Cutter of Indexable Inserts Considering Tool Runout

LIU Dewei1, LI Changhe1, QIN Aiguo2, LIU Bo3, CHEN Yun4, ZHANG Yanbin1   

  1. 1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520;
    2. Qingdao Kaws Intelligent Manufacturing Co. Ltd., Qingdao 266109;
    3. Sichuan New Aviation Ta Technology Co. Ltd., Shifang 618400;
    4. Chengdu Tool Research Institute Co. Ltd., Chengdu 610500
  • Received:2023-12-01 Revised:2024-04-19 Published:2024-12-24

摘要: 铣削力是监测刀具状态的重要切削信号,精准预测铣削力能够有效感知刀具磨损状态。然而,刀具跳动与几何特征耦合作用下,刀片与工件干涉机制发生改变导致铣削力模型精度不能满足智能感知需求是当前工业应用的技术瓶颈。基于此,提出考虑刀具跳动的铣削力数学模型。首先,研究刀具跳动影响下的刀片几何模型,基于几何学与微元法确定刀片实际切削面积。其次,基于加工运动学揭示刀具跳动与几何特征耦合作用影响下的刀片与工件干涉几何关系,分析瞬时未变形切削厚度,建立考虑刀具跳动的可转位面铣刀铣削力数学模型。进一步的,基于斜角切削理论分析铣削力系数标定方法,确定了铣削力系数。最后,通过铣削ZG32MnMo试验验证模型的准确性并数值分析刀具跳动对切削力的影响。结果表明,考虑刀具跳动的理论模型与试验值对比铣削力最低值、最高值、幅值、平均值的预测误差平均值分别为7.0%、7.3%、8.3%、7.0%,相较于传统的铣削力模型精度分别提高了46.4%、13.0%、36.4%、13.2%。考虑刀具跳动的铣削力数学模型为感知刀具磨损状态,提高加工状态稳定性提供了理论依据。

关键词: 铣削, 刀具跳动, 铣削力, 运动学, 斜角切削

Abstract: Milling force is an important cutting signal for tool state control. Milling force predict accurately can effectively sensing of tool wear. However, the technical bottleneck of the current industrial applications is that the accuracy of the milling force model cannot meet the demands of intelligent sensing, which due to the change of the insert and workbench interference mechanism under the coupling of tool runout and geometric features. A milling force mathematical model considering tool runout. Firstly, the insert geometry model under the influence of tool runout is investigated, and the actual cutting area of the insert is determined based on the geometry and microelement method. Secondly, the insert and workbench geometric interference relationship under the influence of tool runout and geometric feature coupling is revealed based on machining kinematics, the instantaneous undeformed cutting thickness is determined, and the milling force mathematical model of indexable face milling cutter considering tool runout is established. Next, the milling force coefficient identification method is analyzed based on the oblique angle cutting theory, and the orthogonal cutting experiment is carried out to determine the milling force coefficient. Finally, the accuracy of the model is verified by milling ZG32MnMo, and the influence of tool runout on cutting forces are analyzed by numerical simulation. The results show that the mean values of prediction errors of the theoretical model considering tool runout compared to the experimental values for the minimum, maximum, magnitude and average values of milling force are 7.0%, 7.3%, 8.3%, 7.0%, respectively, which is a reduction of 46.4%, 13.0%, 36.4%, and 13.2%, respectively, in comparison with the conventional milling force model. The milling force model considering tool runout provides an important reference for realizing tool wear and improving machining state stability.

Key words: milling, tool runout, milling force, kinematics, oblique cutting

中图分类号: