机械工程学报 ›› 2024, Vol. 60 ›› Issue (19): 172-186.doi: 10.3901/JME.2024.19.172
李浦1, 逯代兴2,3
收稿日期:
2023-07-03
修回日期:
2023-12-20
出版日期:
2024-10-05
发布日期:
2024-11-27
作者简介:
李浦,男,1988年出生,博士,副教授。主要研究方向为转子系统动力学和多体系统动力学。E-mail:lipu1215@xjtu.edu.cn;逯代兴(通信作者),男,1982年出生,博士,教授。主要从事转子-轴承系统非线性动力学、多物理域系统协同模拟仿真方面的研究。E-mail:dalu@sit.edu.cn
基金资助:
LI Pu1, LU Daixing2,3
Received:
2023-07-03
Revised:
2023-12-20
Online:
2024-10-05
Published:
2024-11-27
摘要: 协同仿真算法近年来广泛用于数字孪生-多物理域耦合分析以及复杂大规模动力学系统并行计算。相比传统强耦合分析,具有模块化、智能化和非侵入高效计算等优点。随着智能制造发展和工业互联网深度融合,基于协同仿真算法的数据接口和计算平台迅速发展。由于多物理域模型刚度、精度需求和数值特性的差异,协同仿真算法数值稳定性一直是制约其应用的瓶颈问题。首先,介绍了协同仿真算法的基本概念、分类和耦合模型。然后,分别讨论了界面变量插值引入的数值稳定性问题,并汇总了协同仿真增稳技术、局部误差分析和宏观时间步长控制方法。其次,总结了协同仿真算法在综合能源系统、动力学系统和数字孪生技术中的应用和算法平台。最后,面向未来高效高稳定性协同仿真算法,对协同仿真算法研究和应用方面进行了总结和展望。
中图分类号:
李浦, 逯代兴. 协同仿真算法研究综述[J]. 机械工程学报, 2024, 60(19): 172-186.
LI Pu, LU Daixing. A Review of Co-simulation Algorithm[J]. Journal of Mechanical Engineering, 2024, 60(19): 172-186.
[1] FAN H,YU Z,XIA S,et al. Review on coordinated planning of source-network-load-storage for integrated energy systems[J]. Frontiers in Energy Research,2021:1-12. [2] 林俊光,冯彦皓,林小杰,等. 综合能源系统源网荷储动态建模技术进展[J],热力发电. 2022,51(10):92-102. LIN Junguang,FENG Yanhao,LIN Xiaojie,et al. Advances in dynamic modelling of source,grid,load and storage in integrated energy systems[J]. Thermal Power Generation,2022,51(10):92-102. [3] 夏越,陈颖,杜松怀,等. 综合能源系统多时间尺度动态时域仿真关键技术[J]. 电力系统自动化,2022,46(10):97-110. XIA Yue,CHEN Ying,DU Songhuai,et al. Key technologies for multi-time-scale dynamic time-domain simulation of integrated energy system[J]. Automation of Electric Power Systems,2022,46(10):97-110. [4] BREZINA T,HADAS Z,VETISKA J. Using of co-simulation ADAMS-SIMULINK for development of mechatronic systems[C]//14th International Conference Mechatronika,2011,Trencianske Teplice,Slovakia. IEEE,2011:59-64. [5] SPIRYAGIN M,SIMSON S,COLE C,et al. Co-simulation of a mechatronic system using Gensys and Simulink[J]. Vehicle system dynamics,2012,50(3):495-507. [6] ZHOU X,ZHAO B,GONG G. Control parameters optimization based on co-simulation of a mechatronic system for an UA-based two-axis inertially stabilized platform[J]. Sensors,2015,15(8):20169-20192. [7] ADEMUJIMI T,PRABHU V. Digital twin for training bayesian networks for fault diagnostics of manufacturing systems[J]. Sensors,2022,22(4):1-24. [8] HAVARD V,JEANNE B,LACOMBLEZ M,et al. Digital twin and virtual reality:a co-simulation environment for design and assessment of industrial workstations[J]. Production & Manufacturing Research,2019,7(1):472-489. [9] FITZGERALD J,LARSEN P G,PIERCE K. Multi-modelling and co-simulation in the engineering of cyber-physical systems:towards the digital twin[C]//From Software Engineering to Formal Methods and Tools,and Back,Springer,2019:40-55. [10] 林小夏,张树有,陈婧,等. 多体动力学与有限元联合仿真的时变载荷历程模型[J]. 浙江大学学报(工学版),2011,45(09):1643-1649. LIN Xiaoxia,ZHANG Shuyou,CHEN Jing,et al. Time varying load course model for co-simulation of multibody dynamics and finite element[J]. Journal of Zhejiang University(Engineering Science),2011,45(09):1643-1649. [11] STEFAN D,GERHARD H,GUNTER S. Interaction of vehicles and flexible tracks by co-simulation of multibody vehicle systems and finite element track models[J]. Vehicle System Dynamics,2002,37(sup1):372-384. [12] MASSAT J,LAURENT C,BIANCHI J,et al. Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools[J]. Vehicle System Dynamics,2014,52(sup1):338-354. [13] GEAR C,WELLS D. Multirate linear multistep methods[J]. BIT Numerical Mathematics,1984,24(4):484-502. [14] KUEBLER R,SCHIEHLEN W. Two methods of simulator coupling[J]. Mathematical and Computer Modelling of Dynamical Systems,2000,6(2):93-113. [15] HAFNER I,POPPER N. An overview of the state of the art in co-simulation and related methods.[J]. Simulation Notes Europe,2021,31(4):185-200. [16] ARNOLD M. Stability of sequential modular time integration methods for coupled multibody system models[J]. Journal of Computational and Nonlinear Dynamics,2010,5(3):1-9. [17] GONZÁLEZ F,NAYA M Á,LUACES A,et al. On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics[J]. Multibody System Dynamics,2011,25(4):461-483. [18] LIANG,S,ZHANG H,WANG H. Combinative algorithms for the multidisciplinary collaborative simulation of complex mechatronic products based on major step and convergent integration step[J]. Chinese Journal of Mechanical Engineering,2011,24(3):355-363. [19] GLUMAC S,KOVACIC Z. Relative consistency and robust stability measures for sequential co-simulation[C]// 13th International Modelica Conference,2019,Regensburg,Germany. Linkping University Electronic Press,2019:120-157. [20] GLUMAC S,KOVACIC Z. Calling sequence calculation for sequential co-simulation master[C]//ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,2018,New York,USA. 2018:157-160. [21] SWEAFFORD T,YOON H. Co-simulation of dynamic systems in parallel and serial model configurations[J]. Journal of Mechanical Science and Technology,2013,27:3579-3587. [22] KRAFT J,MEYER T,SCHWEIZER B. Reduction of the computation time of large multibody systems with co-simulation methods[C]//IUTAM Symposium on Solver-Coupling and Co-Simulation,2019,Darmstadt,Germany. 2019:131-152. [23] CHEN W,RAN S,WU C,et al. Explicit parallel co-simulation approach:analysis and improved coupling method based on H-infinity synthesis[J]. Multibody System Dynamics,2021,52,255–279. [24] WU Q,SUN Y,SPIRYAGIN M,et al. Parallel co-simulation method for railway vehicle-track dynamics[J]. Journal of Computational and Nonlinear Dynamics,2018,13(4):41004. [25] BENEDIKT M,WATZENIG D,HOFER A. Modelling and analysis of the non-iterative coupling process for co-simulation[J]. Mathematical and computer modelling of dynamical systems,2013,19(5):451-470. [26] BENEDIKT M. Control-oriented aspects of non-iterative co-simulation[J]. Automatisierungstechnik,2014,62(8):598-606. [27] STETTINGER G,HORN M,BENEDIKT M,et al. Model-based coupling approach for non-iterative real-time co-simulation[C]//2014 European Control Conference,2014,Strasbourg,France. IEEE,2014:2084-2089. [28] LI P,YUAN Q. Explicit co-simulation with interface Jacobian approximation[J]. Journal of Mechanical Science and Technology,2022,36(3):1103-1112. [29] LI P,YUAN Q,LU D,et al. Improved explicit co-simulation methods incorporating relaxation techniques[J]. Archive of Applied Mechanics,2020,90(1):17-46. [30] LI P,LU D,SCHMOLL R,et al. Explicit co-simulation approach with improved numerical stability[C]//IUTAM Symposium on Solver-Coupling and Co-Simulation,2019,Darmstadt,Germany. 2019:131-152. [31] KRAFT J,KLIMMEK S,MEYER T,et al. Implicit co-simulation and solver-coupling:efficient calculation of interface-Jacobian and coupling sensitivities/gradients[J]. Journal of Computational and Nonlinear Dynamics. 2022,17(4):41004. [32] SICKLINGER S,BELSKY V,ENGELMANN B,et al. Interface Jacobian-based co-simulation[J]. International Journal for Numerical Methods in Engineering,2014,98(6):418-444. [33] SICKLINGER S,LERCH C,WÜCHNER R,et al. Fully coupled co-simulation of a wind turbine emergency brake maneuver[J]. Journal of Wind Engineering and Industrial Aerodynamics,2015,144:134-145. [34] VINCENTELLI A. The waveform relaxation method for time-domain analysis of large-scale integrated circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1982,1(3):131-145. [35] MACIEJEWSKI M,GARCIA I C,SCHÖPS S,et al. Application of the waveform relaxation technique to the co-simulation of power converter controller and electrical circuit models[C]//22nd International Conference on Methods and Models in Automation and Robotics,2017,Miedzyzdroje,Poland. IEEE,2017:837-842. [36] WACK T,SCHLÜTER S,HENNIG T,et al. Application of waveform relaxation in distributed process co-simulation[J]. Chemie Ingenieur Technik,2018,90(10):1559-1567. [37] SCHWEIZER B,LU D. Semi-implicit co-simulation approach for solver coupling[J]. Archive of Applied Mechanics,2014,84(12):1739-1769. [38] ARNOLD M,CLAUß C,SCHIERZ T. Error analysis and error estimates for co-simulation in FMI for model exchange and co-simulation V2.0[C]//Progress in Differential-Algebraic Equations. Springer,2014:107-125. [39] GU B,ASADA H. Co-simulation of algebraically coupled dynamic subsystems without disclosure of proprietary subsystem models[J]. Journal of Dynamic Systems, Measurement, and Control,2004,126(1):1-13. [40] SCHWEIZER B,LI P,LU D. Implicit co‐simulation methods:stability and convergence analysis for solver coupling approaches with algebraic constraints[J]. Journal of Applied Mathematics and Mechanics,2016,96(8):986-1012. [41] 高浩,干锋,戴焕云. 刚柔耦合接触动态粘合算法研究[J]. 振动与冲击,2012,31(23):123-127. GAO Hao,GAN Feng,DAI Huanyun. A dynamic gluing algorithm for rigid-flexible contact problems[J]. Journal of Vibration and Shock,2012,31(23):123-127. [42] WANG J,MA Z,GREGORY M. A gluing algorithm for distributed simulation of multibody systems[J]. Nonlinear Dynamics,2003,34(1-2):159-188. [43] TSENG F,HULBERT G. A gluing algorithm for network-distributed multibody dynamics simulation[J]. Multibody System Dynamics,2001,6(4):377-396. [44] SCHWEIZER B,LI P,LU D. Explicit and implicit cosimulation methods:stability and convergence analysis for different solver coupling approaches[J]. Journal of Computational and Nonlinear Dynamics,2015,10(5):1-12. [45] GOMES C,THULE C,BROMAN D,et al. Co-simulation:a survey[J]. ACM Computing Surveys,2018,51(3):1-33. [46] SADJINA S,KYLLINGSTAD L T,SKJONG S,et al. Energy conservation and power bonds in co-simulations:non-iterative adaptive step size control and error estimation[J]. Engineering with Computers,2017,33:607-620. [47] MOSHAGEN T. On meeting energy balance errors in co-simulations[J]. Mathematical and computer modelling of dynamical systems,2019,25(2):139-166. [48] BUSCH M,SCHWEIZER B. Stability of co-simulation methods using hermite and lagrange approximation techniques[C]//ECCOMAS Thematic Conference on Multibody Dynamics,2011:1-10. [49] ANDREAS B,MARKUS B,MICHAEL G,et al. Dynamic iteration for coupled problems of electric circuits and distributed devices[J]. SIAM Journal on Scientific Computing,2013,35(2):315-335. [50] SCHWEIZER B,LI P,LU D,et al. Stabilized implicit cosimulation method:solver coupling with algebraic constraints for multibody systems[J]. Journal of Computational and Nonlinear Dynamics,2016,11(2):1-18. [51] FRANCISCO G,SIAMAK A,ARASH M,et al. Energy-leak monitoring and correction to enhance stability in the co-simulation of mechanical systems[J]. Mechanism and Machine Theory,2019,131:172-188. [52] JARKKO R,FRANCISCO G,MIGUEL Á N. An automated methodology to select functional co-simulation configurations[J]. Multibody System Dynamics,2020,48(1):79-103. [53] SCHWEIZER B,LU D,LI P. Co-simulation method for solver coupling with algebraic constraints incorporating relaxation techniques[J]. Multibody System Dynamics,2016,36(1):1-36. [54] TAMELLIN I,RICHIEDEI D,RODRÍGUEZ B,et al. Eigenstructure assignment and compensation of explicit co-simulation problems[J]. Mechanism and Machine Theory,2022,176:1-26. [55] GENSER S,BENEDIKT M,WATZENIG D. Approximated beats exact Interface Jacobians at model-based co-simulation - explanation and impact[J]. Mechanism and Machine Theory,2022,176:1-12. [56] INCI E O,CROES J,BOSMANS J,et al. Offline adaptation of co-simulation time steps by leveraging past co-simulation runs in multi-level mechatronic systems[J]. Mechanism and Machine Theory,2022,171:104740-104763. [57] ARNOLD M,HANTE S,KUEBIS M. Error analysis for co-simulation with force-displacement coupling[J]. Proceedings in Applied Mathematics and Mechanics,2014,14(1):43-44. [58] MEYER T,SCHWEIZER B. Error estimation approach for controlling the communication step size for semi-implicit co-simulation methods[J]. Proceedings in Applied Mathematics and Mechanics,2015,15(1):63-64. [59] BUSCH M. Continuous approximation techniques for co-simulation methods:analysis of numerical stability and local error[J]. Journal of Applied Mathematics and Mechanics,2016,96(9):1061-1081. [60] MEYER T,KRAFT J,SCHWEIZER B. Co-simulation:error estimation and macro-step size control[J]. Journal of Computational and Nonlinear Dynamics,2021,16(4):1-26. [61] SCHIERZ T,ARNOLD M,CLAUß C. Co-simulation with communication step size control in an FMI compatible master algorithm[C]//9th International MODELICA Conference,2012,Munich, Germany. Linkping University Electronic Press,2012:205-214. [62] BENEDIKT M,STIPPEL H,WATZENIG D. An adaptive coupling methodology for fast time-domain distributed heterogeneous co-simulation[R]. SAE Technical Paper,2010. [63] BUSCH M. Zur effizienten Kopplung von Simulationsprogrammen[D]. kassel university press GmbH,2012. BUSCH M. For efficient coupling of simulation programs[D]. Kassel University Press GmbH,2012. [64] DAHMANN J,FUJIMOTO R,WEATHERLY R. The department of defense high level architecture[C]// Winter Simulation Conference,1997,Atlanta, USA. IEEE Computer Society,1997:142-149. [65] BLOCHWITZ T,OTTER M,J. ÅKESSON,et al. Functional mockup interface 2.0:the standard for tool independent exchange of simulation models[J],2012:1-13. [66] 李洋,吴鸣,周海明,等. 基于全能流模型的区域多能源系统若干问题探讨[J]. 电网技术,2015,39(8):2230-2237. LI Yang,WU Ming,ZHOU Haiming,et al. Study on some key problems related to regional multi energy system based on universal flow model[J]. Power System Technology,2015,39(8):2230-2237. [67] 王伟亮,王丹,贾宏杰,等. 能源互联网背景下的典型区域综合能源系统稳态分析研究综述[J]. 中国电机工程学报,2016,36(12):3292-3306. WANG Weiliang,WANG Dan,JIA Hongjie,et al. Review of steady -state analysis of typical regional integrated energy system under the background of energy internet[J]. Proceedings of the CSEE. 2016,36(12):3292-3306. [68] 马凯琪,吴迪,郑灏. 综合能源系统混合仿真技术路线探讨[J]. 供用电,2018,35(7):28-33. MA Kaiqi,WU Di,ZHENG Hao. A look at hybrid simulation technology for integrated energy system[J]. Distribution & Utilization,2018,35(7):28-33. [69] GUSAIN D,CVETKOVIĆ M,PALENSKY P. Simplifying multi-energy system co-simulations using energysim[J]. SoftwareX,2022,18:1-8. [70] CHAGAS I,TOMIM M. Co-simulation applied to power systems with high penetration of distributed energy resources[J]. Electric Power Systems Research,2022,212:1-10. [71] 孙浩,陈永华,吴维宁,等. 区域综合能源仿真分析系统的开发与研制[J]. 电器与能效管理技术,2022(09):18-25. SUN Hao,CHEN Yonghua,WU Weining,et al. Research on simulation system of integrated community energy[J]. Low Voltage Apparatus,2022(09):18-25. [72] LIU S,JIA Y L,SONG Y H. The electrical-thermal co-simulation of integrated engineering system based on modular modeling method[C]// 11th World Congress on Intelligent Control and Automation,2014,Shenyang,China. 2014:6067-6074. [73] XU X,JIA H,CHIANG H,et al. Dynamic modeling and interaction of hybrid natural gas and electricity supply system in microgrid[J]. IEEE Transactions on Power Systems:A Publication of the Power Engineering Society,2015,30(3):1212-1221. [74] AZEROUAL M,BOUJOUDAR Y,ALJARBOUH A,et al. Advanced energy management and frequency control of distributed microgrid using multi-agent systems[J]. International Journal of Emerging Electric Power Systems,2021,23(5):755-766. [75] CHRISTINA A,ANASTASIOS I D. Co-simulation of fuzzy control in buildings and the HVAC system using BCVTB[J]. Advances in Building Energy Research,2018,12(2):195-216. [76] BASTIAN W,WOLFRAM R,DANIEL S,et al. Co-simulation of geothermal applications and HVAC systems[J]. Energy Procedia,2017,125:345-352. [77] MARIJA T,JAN L M H,MICHAEL W. Co-simulation of innovative integrated HVAC systems in buildings[J]. Journal of Building Performance Simulation,2009,2(3):209-230. [78] 孙加亮,田强,胡海岩. 多柔体系统动力学建模与优化研究进展[J]. 力学学报,2019,51(06):1565-1586. SUN Jialiang,TIAN Qiang,HU Haiyan. Advances in dynamic modeling and optimization of flexible multibody systems[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(06):1565-1586. [79] LARS D,TOBIAS L,ANNIKA S. Modelling and simulation of catenary-pantograph interaction[J]. Vehicle System Dynamics,2019,33:490-501. [80] JORGE A,JOAO P,MANUEL P,et al. A computational procedure for the dynamic analysis of the catenary-pantograph interaction in high-speed trains [J]. Journal of Theoretical and Applied Mechanic,2012,50(3):681-699. [81] AMBRÓSIO J,POMBO J,RAUTER F,et al. A memory-based communication in the co-simulation of multibody and finite element codes for pantograph-catenary interaction simulation[J]. Computational Methods in Applied Sciences,2009,12:231-252. [82] KUEBLER R,SCHIEHLEN W,SCHOLZ C. Simulator coupling for multibody systems[J]. Proceedings in Applied Mathematics and Mechanics,2002,1(1):33-36. [83] KUEBLER R,SCHIEHLEN W. Modular Simulation in Multibody System Dynamics[J]. Multibody System Dynamics,2000,4(2-3):107-127. [84] PEIRET A,GONZÁLEZ F,KÖVECSES J,et al. Multibody system dynamics interface modelling for stable multirate co-simulation of multiphysics systems[J]. Mechanism and Machine Theory,2018,127:52-72. [85] ROCCATELLO A,MANCÒ S,NERVEGNA N. Modelling a variable displacement axial piston pump in a multibody simulation environment[J]. Journal of Dynamic Systems,Measurement,and Control,2007,129(4):819-829. [86] JARKKO R,FRANCISCO G,MIGUEL Á N,et al. On the cosimulation of multibody systems and hydraulic dynamics[J]. Multibody System Dynamics,2020,50(2):143-167. [87] LIAO Y,DU I. Cosimulation of multi-body-based vehicle dynamics and an electric power steering control system[J]. Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics,2001,215(3):141-151. [88] SILVA S,SUNDARAM P,'AMBROSIO J. Co-simulation platform for diagnostic development of a controlled chassis system[J]. SAE Transactions,2006,115:1-12. [89] KUMAR A,VIJAYAKUMAR R,SUBRAMANIAN V A. Numerical fluid-structure interaction analysis for a flexible marine propeller using co-simulation method[J]. International Journal of Maritime Engineering,2021,163(A2):81-89. [90] 李田,张继业,张卫华. 横风下高速列车流固耦合动力学联合仿真[J]. 振动工程学报,2012,25(2):138-145. LI Tian,ZHANG Jiye,ZHANG Weihua. Co-simulation of high-speed train fluid-structure interaction dynamics in crosswinds[J]. Journal of Vibration Engineering,2012,25(2):138-145. [91] MARTIN B,BERNHARD S. Coupled simulation of multibody and finite element systems:an efficient and robust semi-implicit coupling approach[J]. Archive of Applied Mechanics,2012,82(6):723-741. [92] ZEISE P,SCHWEIZER B. Dynamics,stability and bifurcation analysis of rotors in air ring bearings[J]. Journal of Sound and Vibration,2022,521:1-35. [93] 陶飞,张辰源,刘蔚然,等. 数字工程及十个领域应用展望[J]. 机械工程学报,2023,59(13):193-215. TAO Fei,ZHANG Chenyuan,LIU Weiran,et al. Digital engineering and its ten application outlooks[J]. Journal of Mechanical Engineering,2023,59(13):193-215. [94] 刘大同,郭凯,王本宽,等. 数字孪生技术综述与展望[J]. 仪器仪表学报,2018,39(11):1-10. LIU Datong,GUO Kai,WANG Benkuan,et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument,2018,39(11):1-10. [95] 黄海松,陈启鹏,李宜汀,等. 数字孪生技术在智能制造中的发展与应用研究综述[J]. 贵州大学学报(自然科学版),2020,37(5):1-8. HUANG Haisong,CHEN Qipeng,LI Yiting,et al. Research overview on the development and application of digital twin technology in intelligent manufacturing[J]. Journal of Guizhou University,2020,37(5):1-8. [96] 陈根. 数字孪生[M]. 北京:电子工业出版社,2020. CHEN Gen. Digital twin[M]. Beijing: Publishing House of Electronics Industry,2020. [97] 李鹏,潘凯,刘小川. 美国空军机体数字孪生计划的回顾与启示[J]. 航空科学技术,2020,31(9):1-10. LI Peng,PAN Kai,LIU Xiaochuan. Retrospect and enlightenment of the AFRL airframe digital twin program[J]. Aeronautical Science & Technology,2020,31(9):1-10. [98] 陶飞,刘蔚然,张萌等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1-18. TAO Fei,LIU Weiran,ZHANG Meng,et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems,2019,25(1):1-18. [99] HATLEDAL L I,SKULSTAD R,LI G,et al. Co-simulation as a fundamental technology for twin ships[J]. Modeling,Identification and Control (MIC),2020,41(4):297-311. [100] 陶飞,张贺,戚庆林,等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统,2021,27(1):1-15. TAO Fei,ZHANG He,QI Qinglin,et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems,2021,27(1):1-15. [101] SCHLEICH B,ANWER N,MATHIEU L,et al. Shaping the digital twin for design and production engineering[J]. CIRP Annals,2017,66(1):141-144. [102] 周林,毛志杰,陈英梅,等. 基于多领域联合建模的卫星通信装备数字孪生构建方法[C]//2020中国系统仿真与虚拟现实技术高层论坛,2020. 北京国信融合信息技术研究院,2020:20-24. ZHOU Lin,MAO Zhijie,CHEN Yingmei, et al. Construction method of digital twin of satellite communication equipment based on multi-domain joint modeling[C]//2020 China System Simulation and Virtual Reality Technology High-Level Forum, 2020. Beijing Research Institute of Information Technology,2020:20-24. [103] REZA S,JAHANSHAHI M,AHMAD P,et al. FMI real-time co-simulation-based machine deep learning control of HVAC systems in smart buildings:Digital-twins technology[J]. Transactions of the Institute of Measurement and Control,2023,45(4). [104] DUGAN R,MCDERMOTT T. An open-source platform for collaborating on smart grid research[C]//2011 IEEE Power and Energy Society General Meeting,2011,Detroit,USA. IEEE Computer Society,2011:1-7. [105] LIN H,VEDA S,SHUKLA S,et al. GECO:Global event-driven co-simulation framework for interconnected power system and communication network[J]. IEEE Transactions on Smart Grid,2012,3(3):1444-1456. [106] KRAMMER M,MARKO N,BENEDIKT M. Interfacing real-time systems for advanced co-simulation-The ACOSAR approach[C]//STAF Doctoral Symposium,2016,Vienna,Austria. 2016:1-8. [107] JOPPICH W,KURSCHNER M. MpCCI - A tool for the simulation of coupled applications[J]. Concurrency and computation:practice and experience. 2006,18(2):183-192. [108] THULE C,LAUSDAHL K,GOMES C,et al. Maestro:The INTO-CPS co-simulation framework[J]. Simulation Modelling Practice and Theory,2019,92:45-61. [109] LACOURSIÈRE C. FMI Go! A runtime environment for FMI based simulation[C]//12th International Modelica Conference,2017,Prague,Czech Republic. 2017:653-662. [110] ANDERSSON C,ÅKESSON J,FÜHRER C. PyFMI:A python package for simulation of coupled dynamic models with the functional mock-up interface[R]. Centre for Mathematical Sciences,Lund University Lund,Sweden,2016. [111] SCHUTTE S,SCHERFKE S,TROSCHEL M. Mosaik:A framework for modular simulation of active components in Smart Grids[C]//2011 IEEE First International Workshop on Smart Grid Modeling and Simulation,2011,Brussels,Belgium. 2011:55-60. [112] PALMINTERI B,KRISHNAMURTHY D,TOP P,et al. Design of the HELICS high-performance transmission distribution communication market co-simulation framework[C]//Workshop on Modeling & Simulation of Cyber-physical Energy Systems,2017,Pittsburgh,USA. IEEE,2017:1-6. [113] SCHERFKE S. AIOMAS Documentation [EB/OL]. https://aiomas.readthedocs.io/en/latest/. [114] HATLEDAL L,SKULSTAD R,LI G,et al. Co-simulation as a Fundamental Technology for Twin Ships[J]. Modeling,Identification and Control (MIC),2020,41(4):297-311. |
[1] | 张钊, 常洪龙. 模态局部化传感器研究进展[J]. 机械工程学报, 2020, 56(13): 32-40. |
[2] | 毛军;杨立国;郗艳红. 大型轴流风机叶片的气动弹性数值分析研究[J]. , 2009, 45(11): 133-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||