[1] JIAO Ruihua,PENG Kaixiang,DONG Jie.Remaining useful life prediction for a roller in a hot strip mill based on deep recurrent neural networks[J].IEEE/CAA Journal of Automatica Sinica,2021,8(7):1345-1354. [2] JARDINE A,LIN D,BANJEVIC D.A review on machinery diagnostics and prognostics implementing condition-based maintenance-ScienceDirect[J].Mechanical Systems and Signal Processing,2006,20(7):1483-1510. [3] LI Zhe,WANG Yi,WANG Kesheng.A deep learning driven method for fault classification and degradation assessment in mechanical equipment[J].Computers in Industry,2019,104(1):1-10. [4] SOUALHI M,NGUYEN K T P,SOUALHI A,et al.Health monitoring of bearing and gear faults by using a new health indicator extracted from current signals[J].Measurement,2019,141(7):37-51. [5] AN D,KIM N H,CHOI J H.Practical options for selecting data-driven or physics-based prognostics algorithms with reviews[J].Reliability Engineering&System Safety,2015,133(1):223-236. [6] 王嘉,张云安,韩旭.基于互依关系的退化与随机冲击建模研究[J].机械工程学报,2021,57(2):230-238.WANG Jia,ZHANG Yunan,HAN Xu.Research on the degradation process and random shocks modeling based on their interdependency[J].Journal of Mechanical Engineering,2021,57(2):230-238. [7] 张义民,孙志礼.机械产品的可靠性大纲[J].机械工程学报,2014,50(14):14-20.ZHANG Yimin,SUN Zhili.The reliability syllabus of mechanical products[J].Journal of Mechanical Engineering,2014,50(14):14-20. [8] WANG Jinjiang,GAO R,YUAN Zhuang,et al.A joint particle filter and expectation maximization approach to machine condition prognosis[J].Journal of Intelligent Manufacturing,2019,30(2):605-621. [9] EL-THALJI I,JANTUNEN E.A summary of fault modeling and predictive health monitoring of rolling element bearings[J].Mechanical Systems and Signal Processing,2015,60-61(8):252-272. [10] 潘尔顺,陈震.高可靠性产品退化建模研究综述[J].工业工程与管理,2015,20(6):1-6.PAN Ershun,CHEN Zhen.Review of degradation model for high reliability products[J].Industrial Engineering and Management,2015,20(6):1-6. [11] 裴洪,胡昌华,司小胜,等.基于机器学习的设备剩余寿命预测方法综述[J].机械工程学报,2019,55(8):1-13.PEI Hong,HU Changhua,SI Xiaosheng,et al.Review of machine learning based remaining useful life prediction methods for equipment[J].Journal of Mechanical Engineering,2019,55(8):1-13. [12] ZHANG Zhengxin,SI Xiaosheng,HU Changhua,et al.Degradation data analysis and remaining useful life estimation:A review on wiener-process-based methods[J].European Journal of Operational Research,2018,271(3):775-796. [13] 许焕卫,黄鑫,黄洪钟,等.多退化指标条件下卫星动量轮可靠性建模与评估[J].机械工程学报,2022,58(17):67-74.XU Huanwei,HUANG Xin,HUANG Hongzhong,et al.Reliability modeling and evaluation of inertial actuators based on inverse gaussian process of individual differences[J].Journal of Mechanical Engineering,2022,58(17):67-74. [14] 王新刚,张鑫垚,杨禄杰,等.竞争失效条件下针对磨损退化数据的刀具可靠性分析[J].中国机械工程,2020,31(14):1672-1677,1746.WANG Xingang,ZHANG Xinyao,YANG Lujie,et al.Tool reliability analysis for wear degradation data under competitive failure conditions[J].China Mechanical Engineering,2020,31(14):1672-1677,1746. [15] SIKORSKA J Z,HODKIEWICZ M,MA L.Prognostic modelling options for remaining useful life estimation by industry[J].Mechanical Systems&Signal Processing,2011,25(5):1803-1836. [16] 吴斌,苏红伟,潘尔顺,等.基于改进预测算法优化的风机齿轮箱维护策略[J].工业工程与管理,2016,21(1):132-135.WU bin,SU Hongwei,PAN Ershun,et al.Maintenance policy of wind turbine gearbox based on improved prediction algorithm optimization[J].Industrial Engineering and Management,2016,21(1):132-135. [17] 雷亚国,贾峰,周昕,等.基于深度学习理论的机械装备大数据健康监测方法[J].机械工程学报,2015,51(21):49-56.LEI Yaguo,JIA Feng,ZHOU Xin,et al.A deep learning-based method for machinery health monitoring with big data[J].Journal of Mechanical Engineering,2015,51(21):49-56. [18] LI Xiang,DING Qian,SUN Jianqiao.Remaining useful life estimation in prognostics using deep convolution neural networks[J].Reliability Engineering&System Safety,2018,172(C):1-11. [19] DEUTSCH J,D HE.Using deep learning-based approach to predict remaining useful life of rotating components[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,48(99):11-20. [20] MALHI A,YAN Ruqiang,GAO R X.Prognosis of defect propagation based on recurrent neural networks[J].IEEE Transactions on Instrumentation and Measurement,2011,60(3):703-711. [21] KUN ZHANG,NING CHEN,JIAN LIU,et al.A GRU-based ensemble learning method for time-variant uncertain structural response analysis[J].Computer Methods in Applied Mechanics and Engineering,2022,391(3):114516. [22] LI Gaoyang,YANG Li,LEE C G,et al.A bayesian deep learning rul framework integrating epistemic and aleatoric uncertainties[J].IEEE Transactions on Industrial Electronics,2020,68(6):8829-8841. [23] 彭艳,李浩然,刘洋,等.基于均布临界域本征损伤耗散的疲劳极限等量关系[J].机械工程学报,2019,55(10):54-61.PENG Yan,LI Haoran,LIU Yang,et al.Fatigue limit equivalent relation based on uniform intrinsic damage dissipation in critical domain[J].Journal of Mechanical Engineering,2019,55(10):54-61. [24] PENG Weiwen,YE Zhisheng,CHEN Nan.Bayesian deep learning based health prognostics towards prognostics uncertainty[J].IEEE Transactions on Industrial Electronics,2019,67(4):2283-2293. [25] 赵申坤,姜潮,龙湘云.一种基于数据驱动和贝叶斯理论的机械系统剩余寿命预测方法[J].机械工程学报,2018,54(12):115-124.ZHAO Shenkun,JIANG Chao,LONG Xiangyun.Remaining useful life estimation of mechanical systems based on the data-driven method and bayesian theory[J].Journal of Mechanical Engineering,2018,54(12):115-124. [26] MAZAEV T,CREVECOEUR G,HOECKE S V.Bayesian convolutional neural networks for rul prognostics of solenoid valves with uncertainty estimations[J].IEEE Transactions on Industrial Informatics,2021,17(12):8418-8428. [27] ZHOU Haoxuan,HUANG Xin,WEN Guangrui,et al.Construction of health indicators for condition monitoring of rotating machinery:A review of the research[J].Expert Systems with Applications,2022,70(2):1-13. [28] MA Meng,MAO Zhu.Deep-convolution-based LSTM network for remaining useful life prediction[J].IEEE Transactions on Industrial Informatics,2021,17(3):1658-1667. [29] ELSHEIKH A,YACOUT S,OUALI M S.Bidirectional handshaking LSTM for remaining useful life prediction[J].Neurocomputing,2019,323(5):148-156. [30] QIN Yi,CHEN Dingliang,XIANG Sheng,et al.Gated dual attention unit neural networks for remaining useful life prediction of rolling bearings[J].IEEE Transactions on Industrial Informatics,2021,17(9):6438-6447. |