• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (11): 181-190.doi: 10.3901/JME.2024.11.181

• 特邀专栏:复杂装备智能设计理论与方法 • 上一篇    下一篇

扫码分享

基于Bayesian-LSTM神经网络的热轧轧辊剩余寿命预测及不确定性评估

朱挺1, 陈兆祥1, 周笛2, 陈震1, 胡兵3, 潘尔顺1   

  1. 1. 上海交通大学机械与动力工程学院 上海 200240;
    2. 东华大学机械工程学院 上海 201620;
    3. 上海宝信软件股份有限公司 上海 201203
  • 收稿日期:2023-08-16 修回日期:2023-12-12 出版日期:2024-06-05 发布日期:2024-08-02
  • 作者简介:朱挺,男,1999年出生。主要研究方向为退化建模、剩余寿命预测、故障诊断。E-mail:accounter@sjtu.edu.cn
    潘尔顺(通信作者),男,1972年出生,博士,教授,博士研究生导师。主要研究方向为可靠性与维护策略、质量控制、故障诊断。E-mail:pes@sjtu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2020YFB1711100)。

Bayesian-LSTM Neural Network-based Remaining Useful Life Prediction and Uncertainty Estimation of Rollers in A Hot Strip Mill

ZHU Ting1, CHEN Zhaoxiang1, ZHOU Di2, CHEN Zhen1, HU Bing3, PAN Ershun1   

  1. 1. Institute of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200240;
    2. College of Mechanical Engineering, Donghua University, Shanghai 201620;
    3. Shanghai Baosight Software Co., Ltd., Shanghai 201203
  • Received:2023-08-16 Revised:2023-12-12 Online:2024-06-05 Published:2024-08-02

摘要: 轧辊性能直接影响钢铁轧制流程的生产效率和生产质量,结合轧辊的复杂运行环境和波动工况条件,精准预测轧辊运行状态的时序变化特征与剩余寿命对生产流程精细化、智能化、高效化尤为重要。考虑轧辊服役过程中的动态不确定性,提出一种结合贝叶斯神经网络的长短期记忆网络(Bayesian long short term memory, Bayesian-LSTM)方法,提取健康指标以评估轧辊健康状态,并智能预测轧辊剩余寿命,量化其分布特征的区间不确定性,进一步讨论Bayesian-LSTM网络结构参数对寿命区间的动态影响。通过某热轧厂的实际运行数据验证了方法的有效性,结果表明:所提出方法相对传统数据驱动方法,预测精度达到96.90%,实现了热轧轧辊寿命智能预测和不确定性评估。

关键词: 热轧, 轧辊, 剩余寿命预测, 不确定性评估, Bayesian-LSTM

Abstract: Roller’s performance directly affects the production efficiency and quality of the steel rolling process. Combined with the complex operating environment and fluctuating working conditions, it is especially important to accurately predict the time-series change characteristics of the roller’s operating status and the remaining useful life (RUL) for the refined, intelligent and efficient production process. Considering the dynamic uncertainty in operation, Bayesian neural network-long short term memory network (Bayesian-LSTM) method is proposed to extract the roller health index to evaluate the roller’s health status and intelligently predict the RUL of the roller and quantify interval uncertainty of the distribution feature. The influence of the constructed Bayesian-LSTM network structure parameters on the lifetime interval is further discussed. And the effectiveness of the method is verified by using the actual industrial data from a hot strip mill. Results show that compared with the traditional data-driven method, the proposed method can not only achieve the prediction accuracy of 96.90%, but also evaluate the uncertainty of roller RUL.

Key words: hot strip mill, rollers, remaining useful life prediction, uncertainty estimation, Bayesian-LSTM

中图分类号: