• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (7): 224-235.doi: 10.3901/JME.2024.07.224

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

融合磨粒特征和工艺参数的粗糙度智能预测研究

方从富, 李弘扬, 沈剑云, 吴贤   

  1. 华侨大学机电及自动化学院 厦门 361021
  • 收稿日期:2023-04-05 修回日期:2023-11-01 出版日期:2024-04-05 发布日期:2024-06-07
  • 通讯作者: 方从富,男,1980年出生,博士,教授,博士生导师。主要研究方向为智能制造与精密加工、超硬工具设计与制备技术、工具状态数智化测量与表征。E-mail:cffang@hqu.edu.cn
  • 作者简介:李弘扬,男,1996年出生,硕士研究生。主要研究方向为智能制造与精密加工。E-mail:lhyhqfj@qq.com;沈剑云,男,1972年出生,博士,研究员。主要研究方向为先进磨粒加工技术与智能数控装备技术。E-mail:jianyun@hqu.edu.cn;吴贤,男,1989年出生,博士,副教授。主要研究方向为微细加工技术与智能制造。E-mail:xianwu@hqu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51675193,52275426)。

Study on Intelligent Prediction of Surface Roughness Based on Integration of Abrasive Characteristics and Process Parameters

FANG Congfu, LI Hongyang, SHEN Jianyun, WU Xian   

  1. College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021
  • Received:2023-04-05 Revised:2023-11-01 Online:2024-04-05 Published:2024-06-07

摘要: 针对加工对象受磨削工具表面状态和工艺参数的综合影响而造成表面粗糙度难以有效准确预测问题,提出了融合磨粒特征和工艺参数的表面粗糙度智能预测方法。基于采集的金刚石磨粒图像,利用图像处理技术提取了工具表面的单位面积磨粒数、磨粒分布均匀性和磨粒出刃高度三个关键特征信息,并评价了提取的特征信息的有效性。在此基础上,提出了融合磨粒特征和工艺参数的粗糙度智能预测算法,开展了YG8硬质合金铣磨加工实验,并将加工结果与预测结果进行对比。结果表明:提出的智能算法可以提高粗糙度预测的准确性和稳定性,其预测的准确率可达到95.6%,而基于传统工艺参数回归模型的准确率仅为86.3%,所提出的方法为粗糙度智能预测提供了参考。

关键词: 磨粒加工, 图像处理, 特征信息, 智能算法, 粗糙度

Abstract: Aiming at the problem that it is difficult to predict the surface roughness of the machined object effectively and accurately due to the comprehensive influence of the surface state of grinding tools and process parameters, an intelligent prediction method of surface roughness based on the integration of abrasive characteristics and processing parameters is proposed. Based on the collected diamond abrasive images on the tool surface, three key characteristic information of abrasive number per unit area, abrasive distribution uniformity and abrasive protrusion height on the tool surface are extracted by using image processing technology, and the effectiveness of the extracted characteristic information is verified. On this basis, a surface roughness intelligent prediction algorithm integrating abrasive characteristics and process parameters is proposed, the milling experiment of YG8 cemented carbide is carried out, and the machining results are compared with the predicted results. The results show that the proposed intelligent algorithm can greatly improve the accuracy and stability of surface roughness prediction, and its prediction accuracy can reach 95.6%, while the accuracy of regression model based on traditional process parameters is only 86.3%, which provides a reference for the intelligent prediction of surface roughness in abrasive machining.

Key words: abrasive machining, image processing, characteristic information, intelligent algorithm, surface roughness

中图分类号: