[1] HONG T T,CUONG N V,KY L H,et al. Effect of process parameters on surface roughness in surface grinding of 90CrSi tool steel[J]. Solid State Phenomena, 2020,305:191-197. [2] 吴玉厚,王强,王贺,等. 氮化硅套圈内圆磨削及回归分析[J]. 沈阳建筑大学学报,2013,29(1):156-162. WU Yuhou,WANG Qiang,WANG He,et al. Internal grinding of silicon nitride ferrules and regression analysis[J]. Journal of Shenyang Jianzhu University,2013,29(1):156-162. [3] MANDAL N,DOLOI B,MONDAL B. Surface roughness prediction model using zirconia toughened alumina (ZTA) turning inserts:Taguchi method and regression analysis[J]. Journal of The Institution of Engineers (India):Series C,2016,97:77-84. [4] 柴桦,黄云,王亚杰,等. 镁合金表面粗糙度预测模型优化的研究[J]. 机械科学与技术,2012,31(6):968-971. CHAI Hua,HUANG Yun,WANG Yajie,et al. Research on the optimization of the prediction model of magnesium alloy surface roughness[J]. Mechanical Science and Technology for Aerospace Engineering,2012,31(6):968-971. [5] JOSHI K,PATIL B. Prediction of surface roughness by machine vision using principal components based regression analysis[J]. Procedia Computer Science,2020,167(9-12):382-391. [6] 高超,王生,王会,等. 砂带磨削表面粗糙度理论预测及灵敏度分析[J]. 表面技术,2018,47(11):295-305. GAO Chao,WANG Sheng,WANG Hui,et al. Theoretical prediction and sensitivity analysis of surface roughness in belt grinding[J]. Surface Technology,2018,47(11):295-305. [7] KHOIRUL EFFENDI M,SOEPANGKAT B O P,NOORCAHYO R,et al. An analysis of frictional coefficient and surface roughness in surface grinding of SKD11 tool steel using minimum quantity lubrication (MQL) and dry techniques[J]. IOP conference series:Materials Science and Engineering,2021,1034(1):012100. [8] 于铁夫,吕玉山,舒启林. 基于响应曲面法的微磨削钛合金表面粗糙度预测分析[J]. 工具技术,2014,48(4):79-82. YU Tiefu,LV Yushan,SHU Qilin. Prediction and analysis of surface roughness of micro-grinding titanium alloy based on response surface method[J]. Tool Engineering,2014,48(4):79-82. [9] HONG SON N,DUC TRUNG D,NGUYEN N. Surface roughness prediction in grinding process of the SKD11 steel by using response surface method[J]. IOP Conference Series:Materials Science and Engineering,2020,758(1):012029. [10] MALKIN S. Grinding technology:Theory and applications of machining with abrasives[D]. Ellis Horwood,New York,1989. [11] DING W F,DAI C W,YU T Y,et al. Grinding performance of textured monolayer CBN wheels:undeformed chip thickness nouniformity modeling and ground surface topography prediction[J]. International Journal of Machine Tools and Manufacture,2017,122:66-80. [12] ZHANG Y Z,FANG C F,HUANG G Q,et al. Modeling and simulation of the distribution of undeformed chip thicknesses in surface grinding[J]. International Journal of Machine Tools and Manufacture,2018,127:14-27. [13] XU X,YE S,YANG Z,et al. Analysis and prediction of surface roughness for robotic belt grinding of complex blade considering coexistence of elastic deformation and varying curvature[J]. Science China Technological Sciences,2021,64(5):957-970. [14] 宋铁军,周志雄,李伟,等. 硬质合金立铣刀螺旋槽磨削表面粗糙度模型研究[J]. 机械工程学报,2017,53(17):185-192. SONG Tiejun,ZHOU Zhixiong,LI Wei,et al. Research on surface roughness model of carbide end mills grinding spiral groove[J]. Journal of Mechanical Engineering,2017,53(17):185-192. [15] 田凤杰,司大胜,李伦. 砂带磨削加工表面粗糙度预测与验证[J]. 工具技术,2021,55(4):96-100. TIAN Fengjie,SI Dasheng,LI Lun. Surface roughness prediction and verification of abrasive belt grinding[J]. Tool Engineering,2021,55(4):96-100. [16] MOHAMMAD R,JOSEPH L Z W. Simulation of workpiece surface roughness after flat grinding by electroplated wheel[J]. Procedia CIRP,2018,7:303-306. [17] 周合生,王军,吕玉山,等. 磨粒有序排布的电镀CBN砂轮磨削表面粗糙度仿真[J]. 工具技术,2015,49(5):98-100. ZHOU Shenghe,WANG Jun,LV Yushan,et al. Simulation of grinding surface roughness of electroplated CBN grinding wheel with Pattern[J]. Tool Engineering,2015,49(5):98-100. [18] YU S,YAO P,YE Z,et al. Simulation and experimental research of tool path planning on profile and surface generation of aspherical-cylindrical lens array by ultra-precision envelope grinding[J]. Journal of Materials Processing Technology,2022,307:117690. [19] WU J,CHENG J,GAO C,et al. Research on predicting model of surface roughness in small-scale grinding of brittle materials considering grinding tool topography[J]. International Journal of Mechanical Sciences,2020,166:105263. [20] 商维,张沭玥,郭俊,等. 基于虚拟砂轮建模的钢轨打磨材料去除仿真研究[J]. 机械工程学报,2018,54(4):30-36. SHANG Wei,ZHANG Shuyue,GUO Jun,et al. Simulation study on material removal of rail grinding based on virtual grinding wheel modeling[J]. Journal of Mechanical Engineering,2018,54(4):30-36. [21] 田雪豪,郑鹏,张琳娜. 高速磨削表面粗糙度预测模型研究[J]. 机械设计与制造,2019(10):193-196. TIAN Xuehao,ZHENG Peng,ZHANG Linna. Research on the prediction model of surface roughness for high-speed grinding[J]. Mechanical Design and Manufacture,2019(10):193-196. [22] KARKALOS N E,KUNDRAK J,MARKOULOS A P. Assessment of the performance of neural networks models for the prediction of surface roughness after grinding of steels[J]. International Journal of Artificial Intelligence,2017,1(15):55-75. [23] 董浩生,杨赫然,孙兴伟,等. 基于改进神经网络算法的螺杆砂带磨削表面粗糙度预测研究[J]. 表面技术,2022,51(4):275-283. DONG Haosheng,YANG Heran,SUN Xingwei,et al. Research on surface roughness prediction of screw abrasive belt grinding based on improved neural network algorithm[J]. Surface Technology,2022,51(4):275-283. [24] DU C,HO C L,KAMINSKI J. Prediction of product roughness,profile,and roundness using machine learning techniques for a hard turning process[J]. Advances in Manufacturing,2021,9(2):206-215. [25] GUO W,WU C,DING Z,et al. Prediction of surface roughness based on a hybrid feature selection method and long short-term memory network in grinding[J]. The International Journal of Advanced Manufacturing Technology,2021,112(9-10):2853-2871. [26] WU Z,ZHANG L,YANG S. Effect of abrasive grain position patterns on the deformation of 6H-silicon carbide subjected to nano-grinding[J]. International Journal of Mechanical Sciences,2021,211:106779. [27] QIU Y,HUANG H. Research on the fabrication and grinding performance of 3-dimensional controllable abrasive arrangement wheels[J]. The International Journal of Advanced Manufacturing Technology,2019,104(5-8):1839-1853. [28] TANAKA H,OKUI K,OKU Y,et al. Corrected power spectral density of the surface roughness of tire rubber sliding on abrasive material[J]. Tribology International,2021,153:106632. [29] TAHVILIAN A M,LIU Z,CHAMPLIAUD H,et al. Experimental and finite element analysis of temperature and energy partition to the workpiece while grinding with a flexible robot[J]. Journal of Materials Processing Technology,2013,213(12):2292-2303. [30] TANG J,QIU Z,LI T. A novel measurement method and application for grinding wheel surface topography based on shape from focus[J]. Measurement,2018,133:495-507. [31] LIN Y F,FANG C F. Study on the segmentation of abrasive grains in diamond tools[J]. International Journal of Abrasive Technology,2018,8(2):203-217. [32] 苏玲玲,黄辉,徐西鹏. 金刚石磨具表面磨粒分布形态的定量评价[J]. 中国机械工程,2014(10):1290-1294. SU Lingling,HUANG Hui,XU Xipeng. Quantitative evaluation of the distribution of abrasive grains on the surface of diamond abrasive tools[J]. China Mechanical Engineering,2014(10):1290-1294. [33] 葛恭豪. 机器学习算法原理及效率分析[J]. 电子世界,2018(1):65-66. GE Gonghao. Principles and efficiency analysis of machine learning algorithms[J]. Electronics World,2018(1):65-66. [34] LI W,WANG W,HUO W. RegBoost:a gradient boosted multivariate regression algorithm[J]. International Journal of Crowd Science,2020,4(1):60-72. |