[1] CHEN Xingzheng,LI Congbo,YANG Qingshan,et al. Toward energy footprint reduction of a machining process[J]. IEEE Transactions on Automation Science and Engineering,2021,19(2):772-787. [2] KHAN M A,JAFFERY S H I,KHAN M,et al. Multi-objective optimization of turning titanium-based alloy Ti-6Al-4V under dry,wet,and cryogenic conditions using gray relational analysis(GRA)[J]. International Journal of Advanced Manufacturing Technology,2020,106(9-10):3897-3911. [3] BAGABER S A,YUSOFF A R. Multi-objective optimization of cutting parameters to minimize power consumption in dry turning of stainless steel 316[J]. Journal of Cleaner Production,2017,157:30-46. [4] LIU Peiji,LIU Fei,LIU Gaojun. A new approach for calculating the input power of machine tool main transmission systems[J]. Advances in Mechanical Engineering,2017,9(9):1-10. [5] 倪恒欣,阎春平,陈建霖,等. 高速干切滚齿工艺参数的多目标优化与决策方法[J]. 中国机械工程,2021,32(7):832-838. NI Hengxin,YAN Chunping,CHEN Jianlin,et al. Multi-objective optimization and decision-making method of high-speed dry gear hobbing processing parameters[J]. China Mechanical Engineering,2021,32(7):832-838. [6] HU Luoke,TANG Renzhong,CAI Wei,et al. Optimisation of cutting parameters for improving energy efficiency in machining process[J]. Robotics and Computer-Integrated Manufacturing,2019,59:406-416. [7] BHINGE R,PARK J,LAW K H,et al. Toward a generalized energy prediction model for machine tools[J]. Journal of Manufacturing Science and Engineering,Transactions of the ASME,2017,139(4):1-12. [8] 吕景祥,唐任仲,郑军. 数据驱动的车削和钻削加工能耗预测[J]. 计算机集成制造系统,2020,26(8):2073-2082. LÜ Jingxiang,TANG Renzhong,ZHENG Jun. Data-driven methodology for energy consumption prediction of turning and drilling processes[J]. Computer Integrated Manufacturing Systems,2020,26(8):2073-2082. [9] XIAO Yongmao,JIANG Zhigang,GU Quan,et al. A novel approach to CNC machining center processing parameters optimization considering energy-saving and low-cost[J]. Journal of Manufacturing Systems,2021,59:535-548. [10] ZHAO Xikun,LI Congbo,CHEN Xingzheng,et al. Data-driven cutting parameters optimization method in multiple configurations machining process for energy consumption and production time saving[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2021,9(3):709-728. [11] CHEN Xingzheng,LI Congbo,TANG Ying,et al. Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time[J]. Energy,2019,175:1021-1037. [12] LI Yuxin,GU Wenbin,YUAN Minghai,et al. Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network[J]. Robot and Computer-Integrated Manufacturing,2022,74:102283. [13] ZHAO Xikun,LI Congbo,TANG Ying,et al. Reinforcement learning-based selective disassembly sequence planning for the end-of-life products with structure uncertainty[J]. IEEE Robotics and Automation Letters,2021,6(4),7807-7814. [14] LI Congbo,ZHAO Xikun,CAO Huajun,et al. A data and knowledge-driven cutting parameter adaptive optimization method considering dynamic tool wear[J]. Robotics and Computer-Integrated Manufacturing,2023,81:102491. [15] 吕岩,徐正军,李聪波,等. 考虑扰动事件的机械加工工艺参数与车间动态调度综合节能优化[J]. 机械工程学报,2022,58(19):242-255. LÜ Yan,XU Zhengjun,LI Congbo,et al. Comprehensive energy saving optimization of processing parameters and job shop dynamic scheduling considering disturbance events[J]. China Mechanical Engineering,2022,58(19):242-255. [16] 李聪波,尹誉先,肖溱鸽,等. 数据驱动下基于元动作的数控车削能耗预测方法[J]. 中国机械工程,2020,31(21):2601-2611. LI Congbo,YIN Yuxian,XIAO Qinge,et al. Data-driven energy consumption prediction method of cnc turning based on meta-action[J]. China Mechanical Engineering,2020,31(21):2601-2611. [17] ZHENG Yan,LI Xutong,XU Long. Balance control for the first-order inverted pendulum based on the advantage actor-critic algorithm[J]. International Journal of Control,Automation and Systems,2020,18:3093-3100. [18] KUMAR A S,ZHAO L,FERNANDO X. Multi-agent deep reinforcement learning-empowered channel allocation in vehicular networks[J]. IEEE Transactions on Vehicular Technology,2021,71(2):1726-1736. |