[1] XIE G, GUO D, LUO J. Lubrication under charged conditions[J]. Tribology International, 2015, 84:22-35. [2] PRASHAD H. Diagnosis of rolling-element bearings failure by localized electrical current between track surfaces of races and rolling-elements[J]. Journal of Tribology, 2002, 124(3):468-473. [3] WHITTLE M, TREVELYAN J, TAVNER P J. Bearing currents in wind turbine generators[J]. Journal of Renewable and Sustainable Energy, 2013, 5(5):053128. [4] 孙远航,王永松,孙习武,等. 航天用导电滑环失效建模与工艺优化研究[J]. 机械工程学报, 2020, 56(16):1-12. SUN Yuanhang, WANG Yongsong, SUN Xiwu, et al. Research on failure modeling and process optimization of transmission conductive slip ring for aerospace[J]. Journal of Mechanical Engineering, 2020, 56(16):1-12. [5] 温诗铸. 纳米摩擦学研究进展[J]. 机械工程学报, 2007, 43(10):1-8. WEN Shizhu. Progress of research on nanotribology[J]. Journal of Mechanical Engineering, 2007, 43(10):1-8. [6] 石德全,康凯娇,高桂丽. 磁盘高速运行过程中磁头运行状态的监测方法[J]. 机械工程学报, 2018, 54(5):228-232. SHI Dequan, KANG Kaijiao, GAO Guili. Method of monitoring the working status of the magnetic head during high speed revolution of hard disk[J]. Journal of Mechanical Engineering, 2018, 54(5):228-232. [7] BECKER A, ABANTERIBA S. Electric discharge damage in aircraft propulsion bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2014, 228(1):104-113. [8] SJÖHOLM M, MÄUSLI P A, BONNER F, et al. Development and qualification of the international space station centrifuge slip ring assembly[C]//11th European Space Mechanisms and Tribology Symposium, ESMATS 2005. 2005, 591:133-140. [9] SPIKES H A. Triboelectrochemistry:Influence of applied electrical potentials on friction and wear of lubricated contacts[J]. Tribology Letters, 2020, 68(3):1-27. [10] HE F, XIE G, LUO J. Electrical bearing failures in electric vehicles[J]. Friction, 2020, 8(1):4-28. [11] WHITE R E. Comprehensive treatise of electrochemistry[M]. New York:Plenum Press, 1980. [12] GAJEWSKI J B, GŁOGOWSKI M J. How do the temperature, angular velocity and electric fields affect mechanical and electrokinetic phenomena in a friction junction?[J]. Tribology International, 2015, 87:139-144. [13] SALMERON G C, LECKNER J, SCHWACK F, et al. Greases for electric vehicle motors:Thickener effect and energy saving potential[J]. Tribology International, 2022, 167:107400. [14] CAO Z, XIA Y, CHEN C, et al. A synergetic strategy based on laser surface texturing and lubricating grease for improving the tribological and electrical properties of Ag coating under current-carrying friction[J]. Friction, 2021, 9(5):978-989. [15] CAI M, YAN H, LI Y, et al. Ti3C2Tx/PANI composites with tunable conductivity towards anticorrosion application[J]. Chemical Engineering Journal, 2021, 410:128310. [16] KIMURA Y, NAKANO K, KATO T, et al. Control of friction coefficient by applying electric fields across liquid crystal boundary films[J]. Wear, 1994, 175(1-2):143-149. [17] LUO J B, SHEN M W, WEN S Z. Tribological properties of nanoliquid film under an external electric field[J]. Journal of Applied Physics, 2004, 96(11):6733-6738. [18] HE Y, LUO J, XIE G. Characteristics of thin liquid film under an external electric field[J]. Tribology International, 2007, 40(10-12):1718-1723. [19] XIE G, LUO J, LIU S, et al. Thin liquid film lubrication under external electrical fields:Roles of liquid intermolecular interactions[J]. Journal of Applied Physics, 2011, 109(11):114302. [20] XIE G, LUO J, LIU S, et al. Nanoconfined liquid aliphatic compounds under external electric fields:Roles of headgroup and alkyl chain length[J]. Soft Matter, 2011, 7(9):4453-4460. [21] HUANG W, KONG L, WANG X. Electrical sliding friction lubricated with ionic liquids[J]. Tribology Letters, 2017, 65(1):1-6. [22] CAO Z, XIA Y, LIU L, et al. Study on the conductive and tribological properties of copper sliding electrical contacts lubricated by ionic liquids[J]. Tribology International, 2019, 130:27-35. [23] FAN X, WANG L. Highly conductive ionic liquids toward high-performance space-lubricating greases[J]. ACS Applied Materials & Interfaces, 2014, 6(16):14660-14671. [24] MICHALEC M, SVOBODA P, KRUPKA I, et al. Investigation of the tribological performance of ionic liquids in non-conformal EHL contacts under electric field activation[J]. Friction, 2020, 8(5):982-994. [25] YANG X, MENG Y, TIAN Y. Effect of imidazolium ionic liquid additives on lubrication performance of propylene carbonate under different electrical potentials[J]. Tribology Letters, 2014, 56(1):161-169. [26] DONG R, BAO L, YU Q, et al. Effect of electric potential and chain length on tribological performances of ionic liquids as additives for aqueous systems and molecular dynamics simulations[J]. ACS Applied Materials & Interfaces, 2020, 12(35):39910-39919. [27] WEN X, YUWEN F, DING Z, et al. Electric arc-induced damage on electroless Ag film using ionic liquid as a lubricant under sliding electrical contact[J]. Tribology International, 2019, 135:269-276. [28] CHEN Q D, SHYU S H, LI W L. An overlapped electrical double layer model for aqueous electrolyte lubrication with asymmetric surface electric potentials[J]. Tribology International, 2020, 147:106283. [29] 解国新,雒建斌,郭丹,等. 普通离子液体润滑剂的润滑成膜性能研究[J]. 机械工程学报, 2011, 47(11):82-86. XIE Guoxin, LUO Jianbin, GUO Dan, et al. Film forming characteristics of common ionic liquid lubricants[J]. Journal of Mechanical Engineering, 2011, 47(11):82-86. [30] ZUO Q, HUANG P, SU F. Theory analysis of asymmetrical electric double layer effects on thin film lubrication[J]. Tribology International, 2012, 49:67-74. [31] CAI M, LIANG Y, ZHOU F, et al. Anticorrosion imidazolium ionic liquids as the additive in poly (ethylene glycol) for steel/Cu-Sn alloy contacts[J]. Faraday Discussions, 2012, 156(1):147-157. [32] LIU X, ZHOU F, LIANG Y, et al. Benzotriazole as the additive for ionic liquid lubricant:One pathway towards actual application of ionic liquids[J]. Tribology Letters, 2006, 23(3):191-196. [33] 吴波,古乐,曹华军,等. 盐溶液条件对边界润滑添加剂在带电表面吸附行为的影响[J]. 机械工程学报, 2021, 57(9):118-126. WU Bo, GU Le, CAO Huajun, et al. Effect of salt solution condition on adsorption behaviors of boundary lubrication additive on charged surfaces[J]. Journal of Mechanical Engineering, 2021, 57(9):118-126. [34] GE X, LI J, LUO R, et al. Macroscale superlubricity enabled by the synergy effect of graphene-oxide nanoflakes and ethanediol[J]. ACS Applied Materials & Interfaces, 2018, 10(47):40863-40870. [35] ZENG D W, YUNG K C, XIE C S. XPS investigation of the chemical characteristics of Kapton films ablated by a pulsed TEA CO2 laser[J]. Surface and Coatings Technology, 2002, 153(2-3):210-216. [36] GLASER T, MEINECKE J, LÄNGER C, et al. Combined XPS and DFT investigation of the adsorption modes of methyl enol ether functionalized cyclooctyne on Si (001)[J]. Chem. Phys. Chem., 2021, 22(4):404-409. [37] KUNDU S, WANG Y, XIA W, et al. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces:A quantitative high-resolution XPS and TPD/TPR study[J]. The Journal of Physical Chemistry C, 2008, 112(43):16869-16878. [38] National Institute of Standards and Technology (NIST). NIST X-ray Photoelectron Spectroscopy Database[DB/OL]. (2012.09.15)[2022.03.05].http://srdata.nist.gov/xps/. [39] ZHAO G, WU X, LI W, et al. Hydroquinone bis (diphenyl phosphate) as an antiwear/extreme pressure additive in polyalkylene glycol for steel/steel contacts at elevated temperature[J]. Industrial & Engineering Chemistry Research, 2013, 52(22):7419-7424. [40] WHITE S N. Qualitative and quantitative analysis of CO2 and CH4 dissolved in water and seawater using laser Raman spectroscopy[J]. Applied Spectroscopy, 2010, 64(7):819-827. |