机械工程学报 ›› 2023, Vol. 59 ›› Issue (21): 293-312.doi: 10.3901/JME.2023.21.293
蒋正权1, 杜新春1, 金业铭1, 余来贵2, 闫明明3, 仝玉萍1, 郝用兴1, 张晟卯2, 张平余2
收稿日期:
2022-12-29
修回日期:
2023-05-09
出版日期:
2023-11-05
发布日期:
2024-01-15
通讯作者:
郝用兴(通信作者),男,1966年出生,博士,教授,硕士研究生导师。主要研究方向为机械工程新材料。E-mail:haoyongxing@ncwu.edu.cn
作者简介:
蒋正权,男,1990年出生,博士,讲师,硕士研究生导师。主要研究方向为润滑油纳米添加剂。E-mail:jiangzhq@ncwu.edu.cn;余来贵,男,1963年出生,博士,教授,博士研究生导师。主要研究方向为摩擦学及材料化学。E-mail:lgyu1963@yahoo.ca;闫明明,男,1990年出生,博士,讲师。主要研究方向为表面工程和材料摩擦磨损。E-mail:yanmingming@ncwu.edu.cn;仝玉萍,女,1979年出生,博士,教授,硕士研究生导师。主要研究方向为纳米功能材料。E-mail:yptong_zz@163.com;张晟卯,男,1975年出生,教授,博士,博士研究生导师。主要研究方向为纳米材料的控制合成与规模化制备、纳米材料摩擦学。E-mail:zsm@vip.henu.edu.cn;张平余,男,1962年出生,博士,教授,博士研究生导师。主要研究方向为材料科学及摩擦学。E-mail:pingyu@henu.edu.cn
基金资助:
JIANG Zhengquan1, DU Xinchun1, JIN Yeming1, YU Laigui2, YAN Mingming3, TONG Yuping1, HAO Yongxing1, ZHANG Shengmao2, ZHANG Pingyu2
Received:
2022-12-29
Revised:
2023-05-09
Online:
2023-11-05
Published:
2024-01-15
摘要: 自2004年石墨烯面世以来,世界各国对石墨烯的研究热情空前高涨,甚至有人将其称为“改变21世纪的材料”。综述了近年来石墨烯及其复合纳米微粒润滑添加剂的摩擦学研究进展,归纳总结了石墨烯单体结构、表面修饰以及复合纳米微粒的组成和润滑机制;指出石墨烯纳米微粒具有良好的摩擦学性能,是当前国际材料科学和摩擦学领域的研究热点之一,其产业化应用可望产生巨大的经济和社会效益;而石墨烯具有超薄纳米片层结构、优异的力学性能及突出的自润滑性能,在润滑添加剂领域的应用前景广阔。但石墨烯及其复合纳米微粒作为润滑添加剂目前仍然面临石墨烯的分散稳定性较差、摩擦过程中的实时服役状态不明确等问题;而实现纳米级石墨烯及其复合材料的绿色环保制备和应用,有助于推动节能减排和实现“双碳目标”,从而促进我国先进制造业的高质量发展。
中图分类号:
蒋正权, 杜新春, 金业铭, 余来贵, 闫明明, 仝玉萍, 郝用兴, 张晟卯, 张平余. 石墨烯及其复合纳米微粒作为润滑添加剂的研究进展[J]. 机械工程学报, 2023, 59(21): 293-312.
JIANG Zhengquan, DU Xinchun, JIN Yeming, YU Laigui, YAN Mingming, TONG Yuping, HAO Yongxing, ZHANG Shengmao, ZHANG Pingyu. Research Progress of Tribology for Graphene and Its Nanocomposites as Lubricating Additives[J]. Journal of Mechanical Engineering, 2023, 59(21): 293-312.
[1] HOLMBERG K, ERDEMIR A. Influence of tribology on global energy consumption, costs and emissions[J]. Friction, 2017, 5(3):263-284. [2] LUO Jianbin, ZHOU Xiang. Superlubricitive engineering-Future industry nearly getting rid of wear and frictional energy consumption[J]. Friction, 2020, 8(4):643-665. [3] HOLMBERG K, KIVIKYTÖ-REPONEN P, HÄRKISAARI P, et al. Global energy consumption due to friction and wear in the mining industry[J]. Tribology International, 2017, 115:116-139. [4] MENG Yuan, SU Fenghua, CHEN Yangzhi. Effective lubricant additive of nano-Ag/MWCNTs nanocomposite produced by supercritical CO2 synthesis[J]. Tribology International, 2018, 118:180-188. [5] SALAH N, ALSHAHRIE A, ABDEL-WAHAB M, et al. Carbon nanotubes of oil fly ash integrated with ultrathin CuO nanosheets as effective lubricant additives[J]. Diamond and Related Materials, 2017, 78:97-104. [6] WU Hui, ZHAO Jingwei, CHENG Xiawei, et al. Friction and wear characteristics of TiO2 nano-additive water-based lubricant on ferritic stainless steel[J]. Tribology International, 2018, 117:24-38. [7] CAO Zhengfeng, XIA Yanqiu, CHEN Chuan. Fabrication of novel ionic liquids-doped polyaniline as lubricant additive for anti-corrosion and tribological properties[J]. Tribology International, 2018, 120:446-454. [8] GAO Kai, CHANG Qiuying, WANG Bin, et al. The tribological performances of modified magnesium silicate hydroxide as lubricant additive[J]. Tribology International, 2018, 121:64-70. [9] QIU Shihui, LIU Gang, LI Wei, et al. Noncovalent exfoliation of graphene and its multifunctional composite coating with enhanced anticorrosion and tribological performance[J]. Journal of Alloys and Compounds, 2018, 747:60-70. [10] HU Yueyang, LI Weifeng, MA Suhua, et al. The composition and performance of alite-ye'elimite clinker produced at 1300℃[J]. Cement and Concrete Research, 2018, 107:41-48. [11] LEE C, WEI X, KYSAR J, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388. [12] NOVOSELOV K, GEIM A, MOROZOV S, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669. [13] LIU Qian, LIU Zunfeng, ZHANG Xiaoyan, et al. Organic photovoltaic cells based on an acceptor of soluble graphene[J]. Applied Physics Letters, 2008, 92:223303. [14] GILJE S, SONG Han, WANG Minsheng, et al. A chemical route to graphene for device applications[J]. Nano Letters, 2007, 7(11):3394-3398. [15] BLAKE P, BRIMICOMBE P, NAIR R, et al. Graphene-based liquid crystal device[J]. Nano Letters, 2008, 8(6):1704-1708. [16] STOLLER M, PARK S, ZHU Y, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10):3498-3502. [17] HAN Sheng, WU Dongqing, LI Shuang, et al. Porous graphene materials for advanced electrochemical energy storage and conversion devices[J]. Advanced Materials, 2014, 26(6):849-864. [18] RESTUCCIA P, FERRARIO M, RIGHI M. Monitoring water and oxygen splitting at graphene edges and folds:Insights into the lubricity of graphitic materials[J]. Carbon, 2020, 156:93-103. [19] LIU Chu, SHI Jiajia, BRAUN R. The equivalent Young's modulus prediction for vacancy defected graphene under shear stress[J]. Physica E:Low-dimensional Systems and Nanostructures, 2019, 110:115-122. [20] XIE Hua, LIU Yifan, LI Na, et al. High-temperature-pulse synthesis of ultrathin-graphene-coated metal nanoparticles[J]. Nano Energy, 2021, 80:105536. [21] OLABI A, ABDELKAREEM M, WILBERFORCE T, et al. Application of graphene in energy storage device-A review[J]. Renewable and Sustainable Energy Reviews. 2021, 135:110026. [22] JIN Bao, ZHAO Jun, HE Yongyong, et al. High-quality ultra-flat reduced graphene oxide nanosheets with super-robust lubrication performances[J]. Chemical Engineering Journal, 2022, 438:135620. [23] ALGADI H, MAHATA C, SAHOO B, et al. Facile method for the preparation of high-performance photodetectors with a GQDs/perovskite bilayer heterostructure[J]. Organic Electronics, 2020, 76:105444.1-105444.7. [24] CAI Jinming, RUFFIEUX P, JAAFAR R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature, 2010, 466(7305):470-473. [25] SHAO Yuyan, ZHANG Sheng, WANG Chongming, et al. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction[J]. Journal of Power Sources, 2010, 195(15):4600-4605. [26] CHEN Lianyi, KONISHI H, FEHRENBACHER A, et al. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites[J]. Scripta Materialia, 2012, 67(1):29-32. [27] DOU Xuan, KOLTONOW A, HE Xingliang, et al. Self-dispersed crumpled graphene balls in oil for friction and wear reduction[J]. Proceedings of the National Academy of Sciences, 2016, 113(6):1528-1533. [28] FAN Xiaoqiang, LI Wen, FU Hanmin, et al. Probing the function of solid nanoparticle structure under boundary lubrication[J]. ACS Sustainable Chemistry & Engineering. 2017, 5(5):4223-4233. [29] WANG Zhao. Lubricity of graphene on rough Au surfaces[J]. Journal of Physics D:Applied Physics, 2018, 51(43):435301. [30] ESWARAIAH V, SANKARANARAYANAN V, RAMAPRABHU S. Graphene-based engine oil nanofluids for tribological applications[J]. ACS Applied Materials & Interfaces, 2011, 3(11):4221-4227. [31] ZHAO Jun, LI Yingru, WANG Yongfu, et al. Mild thermal reduction of graphene oxide as a lubrication additive for friction and wear reduction[J]. RSC Advances, 2017, 7(3):1177-1766. [32] PATEL J, KIANI A. Effects of reduced graphene oxide (RGO) at different concentrations on tribological properties of liquid base lubricants[J]. Lubricants, 2019, 7(2):11. [33] 马青怡,沈岩,袁晓帅,等. 液相等离子制备石墨烯润滑添加剂的摩擦磨损特性[J]. 车用发动机, 2021(4):42-47. MA Qingyi, SHEN Yan, YUAN Xiaoshuai, et al. Friction and wear properties of graphene lubricating additive prepared with liquid plasma[J]. Vehicle Engine, 2021(4):42-47. [34] KALELI H, DEMIRTAŞ S, UYSAL V, et al. Tribological performance investigation of a commercial engine oil incorporating reduced graphene oxide as additive[J]. Nanomaterials, 2021, 11(2):386. [35] ZHAO Jun, HUANG Yiyao, HE Yongyong, et al. Nanolubricant additives:A review[J]. Friction, 2021, 9(5):891-917. [36] GULZAR M, MASJUKI H, KALAM M, et al. Tribological performance of nanoparticles as lubricating oil additives[J]. Journal of Nanoparticle Research, 2016, 18(8):223. [37] KONG Linghui, SUN Jianlin, BAO Yueyue. Preparation, characterization and tribological mechanism of nanofluids[J]. RSC Advances, 2017, 7(21):11269-12599. [38] LEE C, HWANG Y, CHOI Y, et al. A study on the tribological characteristics of graphite nano lubricants[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(1):85-90. [39] ZHAO Jun, MAO Junyuan, LI Yingru, et al. Friction-induced nano-structural evolution of graphene as a lubrication additive[J]. Applied Surface Science, 2018, 434:21-27. [40] NASSER K I, LIÑEIRA Del Río J M, LÓPEZ E, et al. Hybrid combinations of graphene nanoplatelets and phosphonium ionic liquids as lubricant additives for a polyalphaolefin[J]. Journal of Molecular Liquids, 2021, 336:116266. [41] TAMADA I, LOPES P, MONTAGNOLLI R, et al. Biodegradation and toxicological evaluation of lubricant oils[J]. Brazilian Archives of Biology and Technology, 2012, 55(6):951-956. [42] LIÑEIRA Del Río J, GUIMAREY M J, PRADO J, et al. Improving the tribological performance of a biodegradable lubricant adding graphene nanoplatelets as additives[J]. Journal of Molecular Liquids, 2022, 345:117797. [43] ZHAO Yang, GENG Zhongrong, LI Dongshan, et al. An investigation on the tribological properties of graphene and ZDDP as additives in PAO4 oil[J]. Diamond and Related Materials, 2021, 120:108635. [44] 付景国,朱嘉琪,朱新河,等. 石墨烯与ZDDP作为复配润滑油添加剂的摩擦学性能[J]. 大连海事大学学报, 2020, 46(2):114-119. FU Jingguo, ZHU Jiaqi, ZHU Xinhe, et al. Tribological properties of graphene and ZDDP as compound lubricant additives[J]. Journal Dalian Maritime University, 2020, 46(2):114-119. [45] 张世堂,王昆,胡泽祥. 石墨烯添加剂对润滑油基础油摩擦学性能的影响[J]. 石油炼制与化工, 2018, 49(9):91-95. ZHANG Shitang, WANG Kun, HU Zexiang. Effect of graphene additive on tribological properties of lube base oil[J]. Petroleum Processing and Petrochemicals, 2018, 49(9):91-95. [46] 李妍,龙军,赵毅,等. 柴油抗磨剂分子的极性基团对其抗磨性能的影[J]. 石油炼制与化工, 2019, 50(3):80-86. LI Yan, LONG Jun, ZHAO Yi, et al. Effect of polar groups of diesel anti-wear agent on anti-wear performance[J]. Petroleum Processing and Petrochemicals, 2019, 50(3):80-86. [47] LIANG Zhao, WANG Siyuan, ZHU Kaiji, et al. Enhancing the tribological properties and corrosion resistance of graphene-based lubricating grease via ultrasonic-assisted ball milling[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2022, 633:127889. [48] LIN Jinshan, WANG Liwei, CHEN Guohua. Modification of graphene platelets and their tribological properties as a lubricant additive[J]. Tribology Letters, 2011, 41(1):209-215. [49] LA D, TRUONG T, PHAM T, et al. Scalable fabrication of modified graphene nanoplatelets as an effective additive for engine lubricant oil:Nanomaterials[Z]. 2020:10. [50] ZHANG Wei, ZHOU Ming, ZHU Hongwei, et al. Tribological properties of oleic acid-modified graphene as lubricant oil additives[J]. Journal of Physics D:Applied Physics, 2011, 44(20):205303. [51] 董懿,张艳岗,刘勇,等. 化学法石墨烯分散液的制备及其摩擦学性能的研究[J]. 机械科学与技术, 2020, 39(8):1295-1298. DONG Yi, ZHANG Yangang, LIU Yong, et al. Preparation and tribological properties of chemical graphene distillation[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8):1295-1298. [52] 张姗姗,赵建国,张进,等. 褶皱石墨烯球对润滑油摩擦性能的影响[J]. 化工学报, 2018, 69(10):4479-4485. ZHANG Shanshan, ZHAO Jianguo, ZHANG Jin, et al. Effect of crumpled graphene balls on friction performance of base oil[J]. CIESC Journal, 2018, 69(10):4479-4485. [53] ISMAIL N A, MOHD ZULKIFLI N W, CHOWDHURY Z Z, et al. Grafting of straight alkyl chain improved the hydrophobicity and tribological performance of graphene oxide in oil as lubricant[J]. Journal of Molecular Liquids, 2020, 319:114276. [54] 夏池,李传,陶炜,等. 油溶性氧化石墨烯的制备及在润滑油中的摩擦学性能[J]. 润滑与密封, 2018, 43(8):137-142. XIA Chi, LI Chuan, TAO Wei, et al. Preparation and tribological properties of oil-soluble graphene oxide as lubricant additive[J]. Lubrication Engineering, 2018, 43(8):137-142. [55] 彭玉兴,王臣,朱真才,等. 矿井提升钢丝绳改性氧化石墨烯润滑油减摩特性研究[J]. 摩擦学学报, 2021, 41(2):149-159. PENG Yuxing, WANG Chen, ZHU Zhencai, et al. Anti-Friction properties of modified graphene oxide lubricants for wire rope in a mine hoist[J]. Tribology, 2021, 41(2):149-159. [56] PAUL G, SHIT S, HIRANI H, et al. Tribological behavior of dodecylamine functionalized graphene nanosheets dispersed engine oil nanolubricants[J]. Tribology International, 2019, 131:605-619. [57] CHOUDHARY S, MUNGSE H, KHATRI O. Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications[J]. Journal of Materials Chemistry, 2012, 22(39):21032-21039. [58] WANG Siyuan, CHEN Ding, CHEN Yaotong, et al. Dispersion stability and tribological properties of additives introduced by ultrasonic and microwave assisted ball milling in oil[J]. RSC Advances, 2020, 10(42):25177-25185. [59] ZHANG Lei, HE Yi, ZHU Lin, et al. Alkyl phosphate modified graphene oxide as friction and wear reduction additives in oil[J]. Journal of Materials Science, 2019, 54(6):4626-4636. [60] ZHANG Lixiu, YIN Zhenyu, WEI Xiaoyi, et al. Study on friction properties of polydopamine modified graphene oxide as lubricant additive[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2022:1-13. [61] 赵磊,杨红梅,刘畅,等. 辛硫醇改性氧化石墨烯在润滑脂中的摩擦学性能[J]. 润滑与密封, 2020, 45(2):7-11, 16. ZHAO Lei, YANG Hongmei, LIU Chang, et al. Triboloical properties of octanethiol modified graphene oxide in lubricant grease[J]. Lubrication Engineering, 2020, 45(2):7-11, 16. [62] ZHU Chao, YAN Yehai, WANG Fan, et al. Facile fabrication of long-chain alkyl functionalized ultrafine reduced graphene oxide nanocomposites for enhanced tribological performance[J]. RSC Advances, 2019, 9(13):7324-7333. [63] MENG Yuan, SU Fenghua, CHEN Yangzhi. A. Novel nanomaterial of graphene oxide dotted with Ni nanoparticles produced by supercritical CO2-assisted deposition for reducing friction and wear[J]. ACS Applied Materials & Interfaces, 2015, 7(21):11604-11612. [64] JIA Zhengfeng, CHEN Tiedan, WANG Jie, et al. Synthesis, characterization and tribological properties of Cu/reduced graphene oxide composites[J]. Tribology International, 2015, 88:17-24. [65] HOU Xiao, YANG Cuizhen, HE Jie, et al. Preparation and tribological properties of lanthanum trifluoride nanoparticles-decorated graphene oxide nanosheets[J]. Industrial & Engineering Chemistry Research, 2015, 54(17):4773-4780. [66] PANG Wenchao, NI Zifeng, WU Jialiang, et al. Investigation of tribological properties of graphene oxide reinforced ultrahigh molecular weight polyethylene under artificial seawater lubricating condition[J]. Applied Surface Science, 2018, 434:273-282. [67] ETTEFAGHI E, AHMADI H, RASHIDI A, et al. Experimental evaluation of engine oil properties containing copper oxide nanoparticles as a nanoadditive[J]. International Journal of Industrial Chemistry, 2013, 4(1):28. [68] ZHANG Yi, TANG Hua, JI Xiaorui, et al. Synthesis of reduced graphene oxide/Cu nanoparticle composites and their tribological properties[J]. RSC Advances, 2013,3(48):26086-26093. [69] LI Xueshan, ZHAO Yibo, WU Wei, et al. Synthesis and characterizations of graphene-copper nanocomposites and their antifriction application[J]. Journal of Industrial and Engineering Chemistry, 2013, 20(4):2043-2049. [70] YAO Jie, SHI Xiaoliang, ZHAI Wenzheng, et al. Effect of TiB2 on tribological properties of TiAl self-lubricating composites containing Ag at elevated temperature[J]. Journal of Materials Engineering and Performance, 2015, 24(1):307-318. [71] 施琴,朱和军. 银/石墨烯复合润滑添加剂对于润滑油摩擦性能的影响[J]. 粉末冶金技术, 2020, 38(4):257-261. SHI Qin, ZHU Hejun. Effects of Ag/RGO composites as lubricant additives on the tribological properties of lubricating oil[J]. Powder Metallurgy Technology, 2020, 38(4):257-261. [72] WANG Li, GONG Peiwei, LI Wei, et al. Mono-dispersed Ag/Graphene nanocomposite as lubricant additive to reduce friction and wear[J]. Tribology International, 2020, 146:106228. [73] 胡海峰,王连海,李晓,等. 石墨烯/纳米铜复合润滑油添加剂摩擦学性能研究[J]. 润滑与密封, 2018, 43(9):98-103. HU Haifeng, WANG Lianhai, LI Xiao, et al. Tribological properties of grapheme/copper nanoparticles as lubricant additives[J]. Lubrication Engineering, 2018, 43(9):98-103. [74] MENG Yuan, SU Fenghua, CHEN Yangzhi. Au/Graphene oxide nanocomposite synthesized in supercritical CO2 fluid as energy efficient lubricant additive[J]. ACS Applied Materials & Interfaces, 2017, 45(9):39549-39559. [75] WANG Chenglong, SUN Jianlin, GE Chenglin, et al. Synthesis, characterization and lubrication performance of reduced graphene oxide-Al2O3 nanofluid for strips cold rolling[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 637:128204. [76] SONG Haojie, JIA Xiaohua, LI Na, et al. Synthesis of α-Fe2O3 nanorod/graphene oxide composites and their tribological properties[J]. Journal of Materials Chemistry, 2012, 22(3):895-902. [77] LI Chuan, ZHANG Qiangqiang, WU Bo, et al. Effect of rGO@Fe3O4 on the tribological behavior of biodiesel soot-contaminated polyalphaolefin[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2021, 235(3):668-676. [78] JIANG Zhengquan, ZHANG Yujuan, YANG Guangbin, et al. Synthesis of oil-soluble WS2 nanosheets under mild condition and study of their effect on tribological properties of poly-alpha olefin under evaluated temperatures[J]. Tribology International, 2019, 138:68-78. [79] JIANG Zhengquan, ZHANG Yujuan, YANG Guangbin, et al. Tribological properties of oleylamine-modified ultrathin WS2 nanosheets as the additive in polyalpha olefin over a wide temperature range[J]. Tribology Letters. 2016, 61(3):24. [80] JIANG Zhengquan, YANG Guangbin, ZHANG Yujuan, et al. Facile method preparation of oil-soluble tungsten disulfide nanosheets and their tribological properties over a wide temperature range[J]. Tribology International. 2019, 135:287-295. [81] JIANG Zhengquan, ZHANG Yujuan, YANG Guangbin, et al. Tribological properties of tungsten disulfide nanoparticles surface-capped by oleylamine and maleic anhydride dodecyl ester as additive in diisooctylsebacate[J]. Industrial & Engineering Chemistry Research, 2017, 56(6):1365-1375. [82] ZHENG Xiaojing, XU Yufu, GENG Jian, et al. Tribological behavior of Fe3O4/MoS2 nanocomposites additives in aqueous and oil phase media[J]. Tribology International, 2016, 102:79-87. [83] WANG Meng, LI Guangda, XU Huayun, et al. Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets[J]. ACS Applied Materials & Interfaces, 2013, 5(3):1003-1008. [84] LUO Ting, CHEN Xinchun, LI Peisheng, et al. Laser irradiation-induced laminated graphene/MoS2 composites with synergistically improved tribological properties[J]. Nanotechnology, 2018, 29(26):265704. [85] HU Kunhong, LIU M, WANG Qiongjie, et al. Tribological properties of molybdenum disulfide nanosheets by monolayer restacking process as additive in liquid paraffin[J]. Tribology International, 2009, 42(1):33-39. [86] HOU Kaiming, WANG Jinqing, YANG Zhigang, et al. One-pot synthesis of reduced graphene oxide/molybdenum disulfide heterostructures with intrinsic incommensurateness for enhanced lubricating properties[J]. Carbon, 2017, 115:83-94. [87] SONG Haojie, WANG Biao, ZHOU Qiang, et al. Preparation and tribological properties of MoS2/graphene oxide composites[J]. Applied Surface Science, 2017, 419:24-34. [88] ISMAIL N, CHOWDHURY Z, JOHAN M, et al. MoS2 - functionalized graphene composites-Potential replacement for lubricant friction modifier and anti- wear additives[J]. Advanced Engineering Materials, 2021, 23(9):2100030. [89] WU Jian, MU Liwen, ZHU Jiahua, et al. Synthesis of hollow fullerene-like molybdenum disulfide/reduced graphene oxide nanocomposites with excellent lubricating properties[J]. Carbon, 2018, 134:423-430. [90] 张飞霞,李长生,张毅,等. 还原氧化石墨烯/MoS2 与碳纳米管/MoS2 作为润滑油添加剂的摩擦学性能研究[J]. 人工晶体学报, 2015, 44(3):801-807. ZHANG Feixia, LI Changsheng, ZHANG Yi, et al. Tribological property of RGO/MoS2 and CNTs/MoS2 as lubricated oil additives[J]. Journal of Synthetic Crystals, 2015, 44(3):801-807. [91] ALDANA P U, VACHER B, LE M T, et al. Action mechanism of WS2 nanoparticles with ZDDP additive in boundary lubrication regime[J]. Tribology Letters, 2014, 56(2):249-258. [92] RATOI M, NISTE V, WALKER J, et al. Mechanism of action of WS2 lubricant nanoadditives in high-pressure contacts[J]. Tribology Letters, 2013, 52(1):81-91. [93] ZHENG Dan, WU Yanping, LI Zhengyang, et al. Tribological properties of WS2/graphene nanocomposites as lubricating oil additives[J]. RSC Advances, 2017, 7(23):146-1468. [94] 朱开吉. 石墨烯/二硫化钨复合锂基润滑脂的制备及其性能研究[D]. 长沙:湖南大学, 2020. ZHU Kaiji. Preparation and performance study of graphene/WS2 composite lithium grease[D]. Changsha:Hunan University, 2020. [95] 杨亚文,王娜,任俊芳,等. 核壳纳米复合润滑材料研究进展[J]. 材料导报, 2019, 33(19):3242-3250. YANG Yawen, WANG Na, REN Junfang, et al. Research progress of composite lubricating material with core-shell structure[J]. Materials Reports, 2019, 33(19):3242-3250. [96] 郭竟尧,侯显斌,魏钰坤,等. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能[J]. 材料导报, 2021, 35(20):20011-20015. GUO Jingyao, HOU Xianbin, WEI Yukun, et al. Preparation and tribological properties of nano-calcium metaborate/reduced graphene lubricant additive[J]. Materials Reports, 2021, 35(20):20011-20015. [97] LIU Yuchen, MATETI S, LI Chao, et al. Synthesis of composite nanosheets of graphene and boron nitride and their lubrication application in oil[J]. Advanced Engineering Materials, 2018, 20(2):1700488. [98] WU Bo, SONG Haojie, LI Chuan, et al. Enhanced tribological properties of diesel engine oil with nano-lanthanum hydroxide/reduced graphene oxide composites[J]. Tribology International, 2020, 141:105951. [99] LIU Xuqing, ZHOU Feng, LIANG Yongmin, et al. Tribological performance of phosphonium based ionic liquids for an aluminum-on-steel system and opinions on lubrication mechanism[J]. Wear, 2006, 261(10):1174-1179. [100] ZHOU Feng, LIANG Yongmin, LIU Weimin. Ionic liquid lubricants:Designed chemistry for engineering applications[J]. Chemical Society Reviews, 2009, 38(9):2590-2599. [101] XIAO Huaping, GUO Dan, LIU Shuhai, et al. Film thickness of ionic liquids under high contact pressures as a function of alkyl chain length[J]. Tribology Letters, 2011, 41(2):471-477. [102] MORDUKHOVICH G, QU J, HOWE J, et al. A low-viscosity ionic liquid demonstrating superior lubricating performance from mixed to boundary lubrication[J]. Wear, 2013, 301(1):740-746. [103] YU Bo, BANSAL D, QU Jun, et al. Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives[J]. Wear, 2012, 289:58-64. [104] PALACIO M, BHUSHAN B. Review of ionic liquids for green molecular lubrication in nanotechnology[J]. Tribology Letters, 2010, 40(2):247-268. [105] YOU Shengli, ZHOU Ming, WANG Mingyue, et al. Frictional performance of an ionic liquid/graphene composite additive in lubricating oil[J]. Nano, 2021, 16(10):2150111. [106] 张晟卯,蒋正权,张玉娟,等. 一种可分散石墨烯纳米 复合 微粒 及其 制备 方法 和应 用:中国, ZL201810121355.4[P]. 2021-01-22. ZHANG Shengmao, JIANG Zhengquan, ZHANG Yujuan, et al. Preparation method and application of dispersible graphene nanocomposites:China, ZL201810121355.4[P]. 2021-01-22. [107] LIU Yanfei, GE Xiangyu, LI Jinjin. Graphene lubrication[J]. Applied Materials Today, 2020, 20:100662. [108] YANG Kang, MA Hongru, CAO Shuaitao, et al. Analysis of friction interfaces with sinusoidal microchannels and the hybrid lubrication mechanisms of a tribo-film[J]. Applied Surface Science, 2020, 525:146502. [109] XUAN Yin, FAN Wu, CHEN Xinchun, et al. Graphene-induced reconstruction of the sliding interface assisting the improved lubricity of various tribo-couples[J]. Materials & Design, 2020, 191:108661. [110] WANG Li, GONG Peiwei, LI Wei, et al. Mono-dispersed Ag/Graphene nanocomposite as lubricant additive to reduce friction and wear[J]. Tribology International, 2020, 146:106228. [111] REN Baijing, GAO Liang, BOTAOXIE, et al. Tribological properties and anti-wear mechanism of ZnO@graphene core-shell nanoparticles as lubricant additives[J]. Tribology international, 2020, 144:106114. |
[1] | 王优强, 徐莹, 莫君, 何彦, 赵涛, 倪陈兵. 磁场作用下水基磁流体对TC4与Si3N4摩擦学性能影响的实验研究[J]. 机械工程学报, 2024, 60(7): 174-183. |
[2] | 王伟, 魏春艳, 屈怡珅, 董少文, 吕凡凡, 金杰, 王快社. 黑磷烯量子点作为水基润滑添加剂的摩擦学性能研究[J]. 机械工程学报, 2024, 60(3): 226-237. |
[3] | 曾鑫, 赖建平, 王驰, 袁小虎, 李丁骏, 余家欣. 基于高通量磁控共溅射技术的非晶合金纳米摩擦学性能研究[J]. 机械工程学报, 2024, 60(15): 185-193. |
[4] | 郭美玲, 杨雷, 李鹏阳, 许振涛, 许超愿, 王权岱, 李言. 氟等离子体对石墨烯纳晶碳膜的刻蚀加工及摩擦学性能调控[J]. 机械工程学报, 2024, 60(15): 216-226. |
[5] | 尹艳丽, 于鹤龙, 王红美, 魏敏, 史佩京, 白志民, 张伟. 蛇纹石/纳米铜复合添加剂改善铜合金减摩抗磨性能的研究[J]. 机械工程学报, 2023, 59(18): 54-68. |
[6] | 吴代琼, 苏琼, 陈磊, 吴平, 王彦斌, 孙初锋, 陈建敏. 石墨烯在复合材料中的定向排布及其应用进展[J]. 机械工程学报, 2023, 59(18): 144-153. |
[7] | 李鑫桐, 王帅, 杜佳鑫, 缪宇新, 陆皓, 徐济进. GO/AlSi10Mg激光熔化沉积组织性能研究[J]. 机械工程学报, 2023, 59(1): 309-318. |
[8] | 袁志山, 戴敏, 郑李娟, 王成勇. 石墨烯纳米孔传感器制造与单分子过孔形态检测[J]. 机械工程学报, 2022, 58(5): 190-197. |
[9] | 蔺娜, 林志燃, 陈瀚宁, 陆龙生. 激光诱导制造石墨烯研究现状与发展趋势[J]. 机械工程学报, 2022, 58(3): 235-250. |
[10] | 张景然, 陆思伟, 贾天棋, 石广丰, 李晶, 张心明, 闫永达. 基于维氏金刚石针尖制备复合SERS基底的技术研究[J]. 机械工程学报, 2022, 58(21): 349-360. |
[11] | 李元, 徐连勇, 高宇, 荆洪阳, 赵雷, 韩永典. 纳米压痕研究石墨烯增强Sn-Ag-Cu钎料焊点的高温蠕变行为[J]. 机械工程学报, 2022, 58(2): 50-57. |
[12] | 王悦昶, 刘莹, 李鸿举. 粗糙表面仿真方法综述[J]. 机械工程学报, 2022, 58(19): 148-165. |
[13] | 孙魏, 宋庆瑞, 刘焜, 刘小君, 叶家鑫. 基于分子动力学模拟的石墨烯/聚四氟乙烯复合材料两级抗磨机制研究[J]. 机械工程学报, 2022, 58(13): 175-184. |
[14] | 吴波, 古乐, 曹华军, 渠达. 盐溶液条件对边界润滑添加剂在带电表面吸附行为的影响[J]. 机械工程学报, 2021, 57(9): 118-126. |
[15] | 田小永, 闫万权, 黄兰, 王清瑞, 李涤尘. 石墨烯/柔性聚乳酸自传感复合材料结构3D打印与性能研究[J]. 机械工程学报, 2021, 57(7): 215-223. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||