机械工程学报 ›› 2023, Vol. 59 ›› Issue (19): 81-110.doi: 10.3901/JME.2023.19.081
俞滨1,2,3, 李化顺1, 黄智鹏1, 何小龙1, 巴凯先1,2,3, 史亚鹏1,2,3, 孔祥东1,2,3
收稿日期:
2023-03-31
修回日期:
2023-09-06
出版日期:
2023-10-05
发布日期:
2023-12-11
通讯作者:
孔祥东(通信作者),男,1959年出生,博士,教授、博士研究生导师。主要研究方向为电液伺服控制系统。E-mail:xdkong@ysu.edu.cn
作者简介:
俞滨,男,1985年出生,博士,教授、博士研究生导师。主要研究方向为足式机器人液压驱动。E-mail:yb@ysu.edu.cn
基金资助:
YU Bin1,2,3, LI Huashun1, HUANG Zhipeng1, HE Xiaolong1, BA Kaixian1,2,3, SHI Yapeng1,2,3, KONG Xiangdong1,2,3
Received:
2023-03-31
Revised:
2023-09-06
Online:
2023-10-05
Published:
2023-12-11
摘要: 足式机器人以自然界亿万年进化而成的哺乳动物、足式爬行动物或昆虫等足式生物为仿生原型,兼具足式生物肢体运动的灵活性和野外多种复杂地形的适应性,特别是与具备高功重比和快速响应能力优势的液压驱动相结合,大幅提升其运动性能和负重能力。首先,介绍足式机器人应用背景及其液压驱动基本原理,分析液压驱动在足式机器人设计与控制中的重要作用,列举现已公开的国内外多种形式液压足式机器人。其次,阐述近年来国内外研究机构针对足式机器人液压驱动单元、液压动力单元和液压控制方法三方面关键技术,取得的研究进展和研究成果。最后,从与仿生学深入融合的角度,提出了液压足式机器人腿部“肌骨”一体化仿生设计、机身“内脏”紧凑式仿生排布与控制“神经”多层级仿生融合的前沿发展趋势。
中图分类号:
俞滨, 李化顺, 黄智鹏, 何小龙, 巴凯先, 史亚鹏, 孔祥东. 足式机器人液压驱动关键技术研究综述[J]. 机械工程学报, 2023, 59(19): 81-110.
YU Bin, LI Huashun, HUANG Zhipeng, HE Xiaolong, BA Kaixian, SHI Yapeng, KONG Xiangdong. Review of Hydraulic Driven Key Technologies for Legged Robots[J]. Journal of Mechanical Engineering, 2023, 59(19): 81-110.
[1] ESSAIDI A B,HADDAD M,LEHTIHET H E. Minimum-time trajectory planning under dynamic constraints for a wheeled mobile robot with a trailer[J]. Mechanism and Machine Theory,2022,169:104605. [2] 崔达. 履带式爬壁机器人动力学分析及导航控制研究[D].长春:吉林大学,2021. CUI Da. Study on the dynamics analysis and navigation control of tracked wall-climbing robot[D]. Changchun:Jilin University,2021. [3] 战强,李伟. 球形移动机器人的研究进展与发展趋势[J]. 机械工程学报,2019,55(9):1-17. ZHAN Qiang,LI Wei. Research progress and development trend of spherical mobile robots[J]. Journal of Mechanical Engineering,2019,55(9):1-17. [4] 张军豪,陈英龙,杨双喜,等. 蛇形机器人:仿生机理、结构驱动和建模控制[J]. 机械工程学报,2022,58(7):75-92. ZHANG Junhao,CHEN Yinglong,YANG Shuangxi,et al. Snake robotics:Bionic mechanism,structure,actuation,modeling and control[J]. Journal of Mechanical Engineering,2022,58(7):75-92. [5] HE Jun,GAO Feng. Mechanism,actuation,perception,and control of highly dynamic multilegged robots:A review[J]. Chinese Journal of Mechanical Engineering,2020,33(5):130-159. [6] SHI Yapeng,YU Bin,BA Kaixian,et al. A unified trajectory optimization approach for long-term and reactive motion planning of legged locomotion[J]. Journal of Bionic Engineering,2023,3:1-5. [7] LI J Q,CONG D C,YANG Y,et al. A hydraulic actuator for joint robots with higher torque to weight ratio[J]. Robotica,2023,41(2):756-774. [8] ODA K,YASUI Y,KUROSE Y,et al. Enhancement of a leg-wheel mechanism by hydraulics toward compliantly balancing platforms for heavy duty work[J]. Advanced Robotics,2021,35(23):1450-1467. [9] URBAIN G,BARASUOL V,SEMINI C,et al. Effect of compliance on morphological control of dynamic locomotion with HyQ[J]. Autonomous Robots,2021,45:421-434. [10] 刘国才. 液压驱动双足机器人及其动态平衡运动控制研究[D]. 哈尔滨:哈尔滨工业大学,2017. LIU Guocai. Research on hydraulic actuated biped robot and its dynamic balance motion control[D]. Harbin:Harbin Institute of Technology,2017. [11] BISWAL P,MOHANTY P K. Development of quadruped walking robots:A review[J]. Ain Shams Engineering Journal,2021,12(2):2017-2031. [12] 纵怀志,张军辉,张堃,等. 液压四足机器人元件与液压系统研究现状与发展趋势[J]. 液压与气动,2021,45(8):1-16. ZONG Huaizhi,ZHANG Junhui,ZHANG Kun,et al. Research progress and development of hydraulic components and systems for hydraulic actuated quadruped robot[J]. Chinese Hydraulics & Pneumatics,2021,45(8):1-16. [13] GAO Yue,SU Bo,JIANG Lei,et al. Multi-legged robots:Progress and challenges[J]. National Science Review,2022,214:1-2. [14] 巴凯先,孔祥东,朱琦歆,等. 液压驱动单元基于位置/力的阻抗控制机理分析与试验研究[J]. 机械工程学报,2017,53(12):172-185. BA Kaixian,KONG Xiangdong,ZHU Qixin,et al. Position/force-based impedance control and their experimental research on hydraulic drive unit[J]. Journal of Mechanical Engineering,2017,53(12):172-185. [15] 张婷婷. 足式机器人液压驱动基础理论研究——据燕山大学专家俞滨报告录音整理[J]. 液压气动与密封,2022,42(8):124-127. ZHANG Tingting. Research on the basic theory of hydraulic drive of foot robot:According to the report of expert Yu Bin from Yanshan University[J]. Hydraulics Pneumatics & Seals,2022,42(8):124-127. [16] SHI Yapeng,HE Xiaolong,ZOU Wenpeng,et al. Multi-objective optimal torque control with simultaneous motion and force tracking for hydraulic quadruped robots[J]. Machines,2022,10(3):170. [17] BA Kaixian,YU Bin,GAO Zhengjie,et al. An improved force-based impedance control method for the HDU of legged robots[J]. ISA transactions,2019,84,187-205. [18] RAIBERT M H,BROWN H B,CHEPPONIS M. Experiments in balance with a 3d one-legged hopping machine[J]. International Journal of Robotics,1984,3(2):75-92. [19] ZEGLIN G. Uniroo:A one legged dynamic hopping robot[J]. Cambridge:B. S. Thesis of Massachusetts Institute of Technology,1991:25-61. [20] HYON S H,EMURA T,MITA T. Dynamics-based control of a one-legged hopping robot[J]. Journal of Systems & Control Engineering,2003,217(2):83-98. [21] GABE N,AARON S,NEIL N,et al. PETMAN:A humanoid robot for testing chemical protective clothing[J]. Journal of the Robotics Society of Japan,2012,30(4):372-3778. [22] 机器人TV. 频道:阿特拉斯机器人Atlas[EB/OL].[2021-08-18]. https://www.robot.tv/atlas. RobotTV. Channel:Atlas[EB/OL].[2021-08-18]. https://www.robot.tv/atlas. [23] FARAJI S. Versatile and robust 3D walking with a simulated humanoid robot (Atlas):A model predictive control approach[C]//2014 IEEE International Conference on Robotics & Automation,May 31-June 7,2014,City University of Hong Kong,Hong Kong. New York:IEEE,2014:1943-1950. [24] STEPHENS B. Push recovery control for force- controlled humanoid robots[D]. Pittsburgh:Carnegie Mellon University,2011. [25] BOARDWALKROBOTICS. Meet nadia[EB/OL].[2022-12-23]. https://boardwalkrobotics.com/Nadia.html. [26] HYON S H. Development of a fast torque-controlled hydraulic humanoid robot that can balance compliantly[C]//2015 IEEE-RAS 15th International Conference on Humanoid Robots,November 3-5,2015,Korea Institute of Science and Technology,Seoul. New York:IEEE,2015:576-581. [27] KAMINAGA H. Mechanism and control of whole-body electro-hydrostatic actuator driven humanoid robot hydra[C]//2016 International Symposium on Experimental Robotics,October 3-8,2016,International House of Japan,Tokyo. Berlin:Springer International Publishing,2016:656-665. [28] 王海燕. 液压驱动双足机器人运动系统设计与控制[D]. 济南:山东大学,2014. WANG Haiyan,Design and control of a hydraulic actuated biped robot motion system[D]. Jinan:Shandong University,2014. [29] 马冬. 两点式液压双足步行机器人步态规划及其实验研究[D]. 长沙:东南大学,2017. MA Dong. Gait planning and experiment research of two-point-foot walking robot[D]. Changsha:Southeast University,2017. [30] 董昊臻. 双足机器人步态仿真及腿部设计与控制研究[D]. 武汉:华中科技大学,2021. DONG Haozhen. Research on gait simulation with design and control of leg for biped robot[D]. Wuhan:Huazhong University of Science and Technology,2021. [31] PLAYTER R. BigDog[C]//The International Society for Optical Engineering. Unmanned systems technology VIII,April 17-20,2006,Orlando,Florida. Washington:SPIE,2006:6320201-6320206. [32] RAIBERT M,BLANKESPOOR K,NELSON G,et al. BigDog,the rough-terrain quadruped robot[J]. Ifac Proceedings Volumes,2008,41(2):10822-10825. [33] MICHAEL K. Meet Boston dynamics' LS3-the latest robotic war machine[J]. Tedxuwollongong Talk,2012:1-10. [34] SIMON P. Military robotics:Latest trends and spatial grasp solutions[J]. International Journal of Advanced Research in Artificial Intelligence,2015,4(4):9-18. [35] ELIZABETH P. Meet spot:New breed of robot dog climbs and trots[EB/OL].[2015-02-11]. https://www.livescience.com/49760-robot-dog-boston-dynamics.html. [36] SEMINI C,TSAGARAKIS N G,GUGLIELMINO E,et al. Design of HyQ-A hydraulically and electrically actuated quadruped robot[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2011,225(6):831-849. [37] SEMINI C. HyQ-design and development of a hydraulically actuated quadruped robot[D]. Genoa:University of Genoa,Italy,2010. [38] NEUNERT M,STÄUBLE M,GIFTTHALER M,et al. Whole-body nonlinear model predictive control through contacts for quadrupeds[J]. IEEE Robotics and Automation Letters,2018,3(3):1458-1465. [39] KHAN H. Development of the lightweight hydraulic quadruped robot -MiniHyQ[C]//2015 IEEE International Conference on Technologies for Practical Robot Applications,May 11-12,2015,Woburn,Massachusetts. New York:IEEE, 2015:1-6. [40] SEMINI C,BARASUOL V,GOLDSMITH J,et al. Design of the hydraulically-actuated,torque-controlled quadruped robot HyQ2Max[J]. IEEE/ASME Transactions on Mechatronics,2016,22(2):635-646. [41] RADULESCU A. Optimization for non-periodic dynamic motions of legged systems[C]//International Workshop on Human Friendly Robotics (HFR). International Workshop on Human Friendly Robotics,2016. [42] Legged robots. HyQReal:Quadruped design and applications in agriculture and space exploration[EB/OL].[2022-05-07]. https://www.youtube.com/watch?v=cIBX9DmphF8list=PLY45TGWcpM7yohYe33biZd1cEzwLK78dhindex=2. [43] KIM T J. The energy minimization algorithm using foot rotation for hydraulic actuated quadruped walking robot with redundancy[C]//The 41st International Symposium on Robotics and the 6th German Conference on Robotics,June 7-9,2010,Munich. Frankfurt:VDE,2010:1-6. [44] KIM H K,WON D,KWON O,et al. Foot trajectory generation of hydraulic quadruped robots on uneven terrain[J]. Ifac Proceedings Volumes,2008,41(2):3021-3026. [45] CHO J,KIM J T,KIM J,et al. Simple walking strategies for hydraulically driven quadruped robot over uneven terrain[J]. Journal of Electrical Engineering and Technology,2016,11(5):1433-1440. [46] RONG Xuewen,LI Yibin,RUAN Jiuhong,et al. Design and simulation for a hydraulic actuated quadruped robot[J]. Journal of Mechanical Science and Technology,2012,26(4):1171-1177. [47] 柴汇. 液压驱动四足机器人柔顺及力控制方法的研究与实现[D]. 济南:山东大学,2016. CHAI Hui. Research and implementation on compliance and force control of hydraulically actuated quadruped robot[D]. Jinan:Shandong University,2016. [48] YANG Kun,ZHOU Lelai,RONG Xuewen,et al. Onboard hydraulic system controller design for quadruped robot driven by gasoline engine[J]. Mechatronics:The Science of Intelligent Machines,2018,52:36-48. [49] HUA Zisen,RONG Xuewen,LI Yibin,et al. Analysis and verification on energy consumption of the quadruped robot with passive compliant hydraulic servo actuator[J]. Applied Sciences,2020,10(1):340. [50] LI Mantian,JIANG Zhenyu,WANG Pengfei,et al. Control of a quadruped robot with bionic springy legs in trotting gait[J]. Journal of Bionic Engineering,2014,11(2):188-198. [51] SHI Yapeng,WANG Pengfei,WANG Xin,et al. Bio-inspired equilibrium point control scheme for quadrupedal locomotion[J]. IEEE Transactions on Cognitive and Developmental Systems. 2018,11(2):200-209. [52] 蔡昌荣. 平面脊柱型四足机器人高速运动控制策略研究[D]. 哈尔滨:哈尔滨工业大学,2021. CAI Changrong. Reserch on high-speed locomotion control strategy of the planar spinal quadruped robot[D]. Harbin:Harbin Institute of Technology,2021. [53] ZHANG Taihui,WEI Qing,MA Hongxu. Position/force control for a single leg of a quadruped robot in an operation space[J]. International Journal of Advanced Robotic Systems,2013,10(2):137. [54] CAI Runbin,CHEN Yangzhen,HOU Wenqi,et al. Trotting gait of a quadruped robot based on the time-pose control method[J]. International Journal of Advanced Robotic Systems,2013,10(2):50979. [55] WANG Cheng,GAO Junyao,DUAN Xingguang,et al. The CPG gait generate method of the quadruped robot based on iterative learning control algorithm[J]. Advanced Materials Research,2013,677:296-303. [56] GAO Junyao,DUAN Xingguang,HUANG Qiang,et al. The research of hydraulic quadruped bionic robot design[C]//International Conference on Complex Medical Engineering,May 25-28,2013,Beijing Institute of Technology,Beijing. New York:IEEE,2013:620-625. [57] 蒋云峰,许威,姚其昌. 四足仿生移动平台车载液压动力系统设计[J]. 兵工学报,2014,35(S1):80-85. JIANG Yunfeng,XU Wei,YAO Qichang. Design of vehicle-mounted hydraulic power system of bionic quadruped mobile platform[J]. Acta armamentarii,2014,35(S1):80-85. [58] HUANG Hsinpu,ZHANG Junhui,XU Bing,et al. Topology optimization design of a lightweight integrated manifold with low pressure loss in a hydraulic quadruped robot actuator[J]. Mechanical Sciences,2021,12(1):249-257. [59] REN Dongyi,SHAO Junpeng,SUN Guitao,et al. The complex dynamic locomotive control and experimental research of a quadruped-robot based on the robot trunk[J]. Applied Sciences,2019,9(18):3911. [60] 赵江波,龚思进,王军政. 四足机器人步态参数优化及探索性行走策略[J]. 北京理工大学学报,2022,42(4):407-414. ZHAO Jiangbo,GONG Sijin,WANG Junzheng. Gait parameters optimization and exploratory walking strategy for quadruped robots[J]. Transactions of Beijing Institute of Technology,2022,42(4):407-414. [61] 钟建锋. 四足机器人液压驱动系统设计与控制研究[D]. 武汉:华中科技大学,2014. ZHONG Jianfeng. Design and control of hydraulical actuators for quadruped legged robot[D]. Wuhan:Huazhong University of Science and Technology,2014. [62] 万智. 液压驱动四足机器人伺服及柔顺控制研究[D]. 武汉:华中科技大学,2016. WAN Zhi. Servo control and compliance control of hydraulic quadruped robot[D]. Wuhan:Huazhong University of Science and Technology,2016. [63] BA Kaixian,YU Bin,GAO Zhengjie,et al. Parameters sensitivity analysis of position-based impedance control for bionic legged robots' HDU[J]. Applied Sciences,2017,7(10):1035. [64] 朱琦歆. 四足机器人液压驱动系统轻量化参数匹配方法研究[D]. 秦皇岛:燕山大学,2022. ZHU Qixin. Research on lightweight parameter matching method of quadruped robot hydraulic drive system[D]. Qinhuangdao:Yanshan University,2022. [65] BIHARI T E,WALLISER T M,PATTERSON M R. Controlling the adaptive suspension vehicle[J]. Computer,1989,22(6):59-65. [66] The Old Robots Web Site. Walking tractor timberjack by John Deere[EB/OL].[2021-9-14]. https://www.theoldrobots.com/Walking-Robot2.html. [67] TSUMAKI T,KOBAYASHI H,NAKANO E,et al. Development of a practically scaled walking robot for steep terrain of forestry ground[J]. JRSJ,2009,27(4):470-480. [68] IRAWAN A,NONAMI K. Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain[J]. Journal of Field Robotics,2011,28(5):690-713. [69] 英国推出世界最大六腿机器人[J]. 机器人技术与应用,2013,153(3):48. UK launches world's largest six-legged robot[J]. Robot Technique and Application,2013,153(3):48. [70] 李昔学,留沧海,刘佳生,等. 大型重载液压驱动六足机器人样机实验[J]. 机械设计与研究,2016,32(6):28-31. LI Xixue,LIU Canghai,LIU Jiasheng,et al. Experimental study on the prototype of a large heavy-duty hydraulic hexapod robot[J]. Machine Design and Research,2016,32(6):28-31. [71] 王洪洋. 液压六足机器人动力机构的负载匹配及联合仿真研究[D]. 长春:吉林大学,2021. WANG Hongyang. Actuator load matching and co-simulation research of hydraulic hexapod robot[D]. Changchun:Jilin University,2021. [72] 刘逸群,邓宗全,刘振,等. 液压驱动六足机器人一种低冲击运动规划方法[J]. 机械工程学报,2015,51(3):10-17. LIU Yiqun,DENG Zongquan,LIU Zhen,et al. Low-impact motion planning method of hydraulically actuated hexapod robot[J]. Journal of Mechanical Engineering,2015,51(3):10-17. [73] WANG Shoukun,CHEN Zhihua,LI Jiehao,et al. Flexible motion framework of the six wheel-legged robot:Experimental results[J]. IEEE/ASME Transactions on Mechatronics,2022,27(4):2246-2257. [74] 葛文杰. 仿袋鼠跳跃机器人运动学及动力学研究[D]. 西安:西北工业大学,2006. GE Wenjie. Research on the kinematics and dynamicsof kangaroo hopping robot[D]. Xi'an:Northwestern Polytechnical University,2006 [75] GARCIA E,AREVALO J C,MUNOZ G,et al. On the biomimetic design of agile-robot legs[J]. Sensors,2011,11(12):11305-11334. [76] PARK J,KIM K S,KIM S. Design of a cat-inspired robotic leg for fast running[J]. Advanced Robotics,2014,28(23):1587-1598. [77] 陈志伟,金波,朱世强,等. 液压驱动仿生多足机器人单腿设计与试验[J]. 农业工程学报,2016,32(5):36-42. CHEN Zhiwei,JIN Bo,ZHU Shiqiang,et al. Design and experiment of single leg of hydraulically actuated bionic multi-legged robot[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(5):36-42. [78] PLAYTER R. BigDog[C]//Unmanned Systems Technology VIII. SPIE,2006,6230:896-901. [79] ALFAYAD S,OUEZDOU F B,NAMOUN F,et al. High performance integrated electro-hydraulic actuator for robotics-part I:Principle,prototype design and first experiments[J]. Sensors and Actuators A Physical,2011,169(1):115-123. [80] 荣学文. SCalf液压驱动四足机器人的机构设计与运动分析[D]. 山东:山东大学,2013. RONG Xuewen. Mechanism design and kinematics analysis of a hydraulically actuated quadruped robot SCalf[D]. Shandong:Shandong University,2013. [81] 蒋振宇. 基于SLIP模型的四足机器人对角小跑步态控制研究[D]. 哈尔滨:哈尔滨工业大学,2014. JIANG Zhenyu. Control of quadruped robot in trotting gait based on slip model[D]. Harbin:Harbin Institute of Technology,2014. [82] 朱立松. 仿生液压四足机器人控制系统关键技术研究[D]. 北京:北京理工大学,2016. ZHU Lisong. Key technology research on control system of bionic quadruped robot[D]. Beijing:Beijing Institute of Technology,2016. [83] XUE Yong,YANG Junhong,SHANG Jianzhong,et al. Design and optimization of a new kind of hydraulic cylinder for mobile robots[J]. Journal of Mechanical Engineering Science,2015,229(18):3459-3472. [84] WANG Jing,GAO Feng,ZHANG Yong. High power density drive system of a novel hydraulic quadruped robot[C]//American Society of Mechanical Engineers. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,August 17-20,2014,Buffalo,New York. New York:ASME,2014:1-7. [85] 陈思宇. 四足仿生机器人结构设计研究[D]. 武汉:华中科技大学,2014. CHEN Siyu. Mechanical design and analysis of a bionic quadruped robot[D]. Wuhan:Huazhong University of Science and Technology,2014. [86] KAMINAGA H. Development of high-power and backdrivable linear electro-hydrostatic actuator[C]//IEEE. 2014 IEEE-RAS International Conference on Humanoid Robots,November 18-20,2014,Madrid. New York:IEEE,2014:973-978. [87] LU Haojian,GAO Junyao,XIE Lin. Single hydraulic actuator actively-compliant research based on the hydraulic quadruped robot[C]//2015 IEEE International Conference on Information and Automation,August 8-10,2015,Lijiang,Yunnan. New York:IEEE,2015:1331-1336. [88] KO T,KAMINAGA H,NAKAMURA Y. Key design parameters of a few types of electro-hydrostatic actuators for humanoid robots[J]. Advanced Robotics,2018,32(23):1241-1252. [89] CHU Zhen,LUO Jianwen,FU Yili. Variable stiffness control and implementation of hydraulic SEA based on virtual spring leg[C]//2016 IEEE International Conference on Mechatronics and Automation,August 7-10,2016,Harbin,Heilongjiang. New York:IEEE,2016:677-682. [90] HYON S H,SUEWAKA D,TORII Y,et al. Design and experimental evaluation of a fast torque-controlled hydraulic humanoid robot[J]. IEEE/ASME Transactions on Mechatronics,2016,22,(2):623-634. [91] 王东坤. 人形机器人步态规划及关节液压驱动单元变阻抗补偿控制[D]. 秦皇岛:燕山大学,2019. WANG Dongkun. Gait planning of humanoid robot and variable impedance compensation control of joint hydraulic driving unit[D]. Qinhuangdao:Yanshan University,2019. [92] 杨琨. 液压驱动四足机器人能耗分析、优化及动力系统研究[D]. 济南:山东大学,2019. YANG Kun. Energy consumption analysis,optimization and power system research for a hydraulic actuated quadruped robot[D]. Jinan:Shandong University,2019. [93] HUA Zisen,RONG Xuewen,LI Yibin,et al. Analysis and verification on energy consumption of the quadruped robot with passive compliant hydraulic servo actuator[J]. Applied Sciences,2020,10(1):340. [94] 集萃智造. 集萃智造获2021年度工信部"揭榜"大会优秀方案[EB/OL].[2021-12-19]. https://mp.weixin.qq.com/s/i5UZGk61n6eRnHIdPnmqBw.JitriIntelligentManufacturing. Jitri intelligent manufacturing won an excellent plan for the "unveiling" conference of the Ministry of Industry and Information Technology in 2021[EB/OL].[2021-12-19]. https://mp.weixin.qq.com/s/i5UZGk61n6eRnHIdPnmqBw. [95] BARASUOL V,VILLARREAL-MAGA˜NA O A,SANGIAH D,et al. Highly-integrated hydraulic smart actuators and smart manifolds for high-bandwidth force control[J]. Frontiers in Robotics and AI,2018,5:51. [96] 孔祥东,朱琦歆,姚静,等. "液压元件与系统轻量化设计制造新方法"基础理论与关键技术[J]. 机械工程学报,2021,57(24):4-12. KONG Xiangdong,ZHU Qixin,YAO Jing,et al. Basic theory and key technology of "New method for lightweight design and manufacturing of hydraulic components and systems"[J]. Journal of Mechanical engineering,2021,57(24):4-12. [97] 孔祥东,朱琦歆,姚静,等. 高端移动装备液压元件与系统轻量化发展综述[J]. 燕山大学学报,2020,44(3):203-217. KONG Xiangdong,ZHU Qixin,YAO Jing,et al. Reviews of lightweight development of hydraulic components and systems for high level mobile equipment[J]. Journal of Yanshan University,2020,44(3):203-217. [98] 巴凯先,康岩,俞滨,等. 足式机器人轻量化液压驱动执行器质量建模及灵度分析[J]. 机械工程学报,2021,57(24):39-48,82. BA Kaixian,KANG Yan,YU Bin,et al. Mass modeling and sensitivity analysis of lightweight hydraulic actuator for legged robot[J]. Journal of Mechanical Engineering 2021,57(24):39-48,82. [99] 康岩. 基于马腿仿生学的轻量化液压四足机器人腿部结构设计[D]. 秦皇岛:燕山大学,2022. KANG Yan. Leg structure design of lightweight hydraulic quadruped robot based on leg bionics[D]. Qinhuangdao:Yanshan University,2022. [100] 付康平. 液压足式机器人髋关节驱动单元轻量化设计研究[D]. 秦皇岛:燕山大学,2021. FU Kangping. Research on lightweight design of hip drive unit for hydraulic legged robot[D]. Qinhuangdao:Yanshan University,2021. [101] 巴凯先,徐悦鹏,俞滨,等. 用于增材制造缸体的仿生流道设计方法及其液压驱动装置:中国,CN114922880A[P]. 2022-08-19. BA Kaixian,XU Yuepeng,YU Bin,et al. A bionic runner design method and its hydraulic drive device for additive manufacturing cylinder block:China[P]. CN114922880A,2022-08-19. [102] ZONG Huaizhi. Investigation on the combination winding technology of carbon fiber reinforced polymer hydraulic cylinder[C]//Association of Fluid Power Control Engineering of the Chinese Society ofTheoretical and Applied Mechanics. The 21th International Conference of Fluid Power and Mechatronic Control Engineering,November 6-8,2020,Chongqing University of Technology,Chongqing. Changsha:Journal of Central South University,2020:1-10. [103] 徐兵,纵怀志,张军辉,等. 碳纤维复合材料液压缸研究现状与发展趋势[J]. 复合材料学报,2022,39(2):14. XU Bing,ZONG Huaizhi,ZHANG Junhui,et al. Research status and development trend of carbon fiber reinforced polymer hydraulic cylinder[J]. Acta Materiae Compositae Sinica,2022,39(2):14. [104] 史亚鹏. 基于运动规划与足地交互的液压四足机器人力矩控制研究[D]. 哈尔滨:哈尔滨工业大学,2021. SHI Yapeng. Research on torque control based on motion planning and foot-ground interaction for hydraulic quadruped robot[D]. Harbin:Harbin Institute of Technology,2021. [105] 张帅帅. 复杂地形环境中四足机器人行走方法研究[D]. 济南:山东大学,2016. ZHANG Shuaishuai. Research on walking method of quadruped robot on complex terrain and environment[D]. Jinan:Shandong University,2016. [106] 刘京运. 从Big Dog到Spot Mini:波士顿动力四足机器人进化史[J]. 机器人产业,2018,2:109-116. LIU Jingyun. From big dog to spot mini:The evolutionary history of quadruped robots at Boston Dynamics[J]. Robot Industry,2018,2:109-116. [107] 司世才. 仿生液压四足机器人运动特性仿真和液压系统设计[D]. 北京:北京理工大学,2015. SI Shicai. Kinematics simulation and hydraulic system design of bionic hydraulic quadruped robot[D]. Beijing:Beijing Institute of Technology,2015. [108] 张昊昱. 大型高适应性六足机器人结构及稳定性分析[D]. 长春:吉林大学,2021. ZHANG Haoyu. Analysis of the structure and stability of a large and highly adaptable hexapod robot[D]. Changchun:Jilin University,2021. [109] 黄杰. 基于模型预测及直接配点法的液压驱动双足机器人抗扰控制与轨迹优化方法研究[D]. 长沙:国防科技大学,2021. HUANG Jie. Research on anti-disturbance control and trajectory optimization for hydraulic driven biped robot based on model predictive and direct collocation method[D]. Changsha:National University of Defense Technology,2021. [110] 范伯骞. 液压驱动下肢外骨骼机器人关键技术研究[D]. 杭州:浙江大学,2017. FAN Boqian. Research on the key technologies of the hydraulic lower limb exoskeleton robot[D]. Hangzhou:Zhejiang University,2017. [111] 静液压. 波士顿动力Atlas机器人技术细节分析[EB/OL].[2021-02-06]. https://www.ihydrostatics.com/25940/. iHydrostatics. Boston dynamics Atlas robot technical detail analysis[EB/OL].[2021-02-06]. https://www. ihydrostatics.com/25940/. [112] Boston Dynamics. What's new,Atlas?[EB/OL].[2021-10-30]. https://m.youtube.com/watch?v=fRj34o4hN4I. [113] 致知于行. 波士顿动力Atlas机器人技术细节分析(一)[EB/OL].[2021-05-12]. https://zhuanlan.zhihu.com/p/371564686. Knowledge in Action. Technical details analysis of Boston Dynamics Atlas robot (I)[EB/OL].[2021-12-19]. https://zhuanlan.zhihu.com/p/371564686. [114] 俞滨,李化顺,巴凯先,等. 足式机器人轻量化液压油源匹配设计方法研究[J]. 机械工程学报,2021,57(24):58-65. YU Bin,LI Huashun,BA Kaixian,et al. Research on matching design methods of lightweight hydraulic oil source for legged robot[J]. Journal of Mechanical Engineering,2021,57(24):58-65. [115] 燕大液压. 国家重点研发计划"液压元件与系统轻量化设计制造新方法"项目综合绩效评价会召开[EB/OL].[2023-01-20]. https://mp.weixin.qq.com/s/opHS5LeMG1Krc75MGgJL5A. Yanda Hydraulic. The comprehensive performance evaluation meeting of the national key research and development plan "New method for lightweight design and manufacturing of hydraulic components and systems" project was held[EB/OL].[2023-01-20]. https://mp.weixin.qq.com/s/opHS5LeMG1Krc75MGgJL5A. [116] 集萃智造. 大块头有大智慧——集萃智造四足仿生机器人面世[EB/OL].[2019-04-11]. https://mp.weixin.qq.com/s/0zbBi0GdflucHYURng-PoQ. Jitri Intelligent Manufacturing. Big block has great wisdom:Jitri intelligent manufacturing intelligent quadruped bionic robot is available[EB/OL].[2019-04-11]. https://mp.weixin.qq.com/s/0zbBi0GdflucHYURng-PoQ. [117] 沈丕. 双足机器人液压动力单元的设计与控制研究[D]. 武汉:华中科技大大学,2020. SHEN Pi. Research on design and control of hydraulic power unit of biped robot[D]. Wuhan:Huazhong University of Science and Technology,2020. [118] CUI Zemin,RONG Xuewen,LI Yibin. Design and control method of a hydraulic power unit for a wheel-legged robot[J]. Journal of Mechanical Science and Technology,2022,36(4):2043-2052. [119] Boston Dynamics. BigDog overview[EB/OL].[2018-11-22]. https://www.bostondynamics.com/img/BigDogOverview.pdf. [120] FAHMI S,MASTALLI C,FOCCHI M,et al. Passive whole-body control for quadruped robots:Experimental validation over challenging terrain[J]. IEEE Robotics and Automation Letters,2019,4(3):2553-2560. [121] HAVOUTIS J. Onboard perception-based trotting and crawling with the hydraulic quadruped robot(HyQ)[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,November 03-07,2013,Tokyo. New York:IEEE,2013:6052-6057. [122] YANG Qingjun,ZHANG Zhenyang,ZHU Rui,et al. A high-speed flying trot control method for hydraulic quadruped robot based on optimal energy efficiency[J/OL]. SSRN,2023:1-12. [123] 闫曈,许威,苏波. 基于zmp的四足仿生机器人反应式行为控制策略研究[J]. 车辆与动力技术,2021,1(1):1-7,19. YAN Tong,XU Wei,SU Bo. Research on reactive behavior control strategy of quadruped bionic robot based on zmp[J]. Vehicle and Power Technology,2021,1(1):1-7,19. [124] KUBER P,KULKARNI P,KOLHE S,et al. Estimation of zero moment point using centre of gravity based method[J]. International Journal of Engineering Research & Technology,2016,5(10):100-102. [125] 丁良宏. BigDog四足机器人关键技术分析[J]. 机械工程学报,2015,51(7):1-23. DING Lianghong. Key technology analysis of BigDog quadruped robot[J]. Journal of Mechanical Engineering,2015,51(7):1-23. [126] SEMINI C,BARASUOL V,BOAVENTURA T,et al. Towards versatile legged robots through active impedance control[J]. The International Journal of Robotics Research,2015,34(7):1003-1020. [127] 王婷婷. 基于多层CPG的足式机器人运动控制研究[D]. 哈尔滨:哈尔滨工业大学,2014. WANG Tingting. Research on motion control of legged robot based on multi-layer CPG[D]. Harbin:Harbin Institute of Technology,2014. [128] 张国腾. 四足机器人主动柔顺及对角小跑步态运动控制研究[D]. 济南:山东大学,2016. ZHANG Guoteng. Research on active compliance and diagonal trot gait motion control of quadruped robot[D]. Jinan:Shandong University,2016. [129] 曾朋朋. 四足仿生机器人Running Trot步态运动控制研究[D]. 长沙:国防科学技术大学,2017. ZENG Pengpeng. Research on gait motion control of quadruped bionic robot running trot[D]. Changsha:National University of Defense Technology,2017. [130] POWELL M J. Model predictive control of underactuated bipedal robotic walking[C]//2015 IEEE International Conference on Robotics and Automation,May 26-30,2015,Seattle,Washington State. New York:IEEE,2015:5121-5126. [131] Boston Dynamics. ATLAS[EB/OL].[2021-11-18]. https://www.bostondynamics.com/atlas. [132] NEUNERT M,FARSHIDIAN F,WINKLER A W,et al. Trajectory optimization through contacts and automatic gait discovery for quadrupeds[J]. IEEE Robotics and Automation Letters,2017,2(3):1502-1509. [133] TAN W H. A hierarchical framework for quadruped locomotion based on reinforcement learning[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems,September 27-October 1,2021,Prague. New York:IEEE,2021:8462-8468. [134] MASTALLI C,HAVOUTIS I,FOCCHI M,et al. Motion planning for quadrupedal locomotion:Coupled planning,terrain mapping and whole-body control[J]. IEEE Transactions on Robotics,2020,36(6):1635-1648. [135] DING Chao,ZHOU Lelai,LI Yibin,et al. A novel dynamic locomotion control method for quadruped robots running on rough terrains[J]. IEEE Access,2020,8:150435-150446. [136] SCOTT K. Do you love mpc? Robot dancing using optimal control[EB/OL].[2021-7-14]. https://www.youtube.com/watch?v=mlTLxpKdHfA. [137] RATHOD N,BRATTA A,FOCCHI M,et al. Model predictive control with environment adaptation for legged locomotion[J]. IEEE Access,2021,9:145710-145727. [138] DING Yanran,PANDALA A,LI Chuanzheng,et al. Representation-free model predictive control for dynamic motions in quadrupeds[J]. IEEE Transactions on Robotics,2021,37(4):1154-1171. [139] CLEMENTE L. Foothold evaluation criterion for dynamic transition feasibility for quadruped robot[C]//2022 International Conference on Robotics and Automation,May 23-27,2022,Philadelphia,Commonwealth of Pennsylvania. New York:IEEE,2022:4679-4685. [140] CHO B,KIM S W,SHIN S,et al. Energy-efficient hydraulic pump control for legged robots using model predictive control[J]. IEEE/ASME Transactions on Mechatronics,2022,28:3-14. [141] 巴凯先. 机器人腿部液压驱动系统主动柔顺复合控制研究[D]. 秦皇岛:燕山大学,2018. BA Kaixian. Research on active compliant compound control of robot leg hydraulic drive system[D]. Qinhuangdao:Yanshan University,2018. [142] 俞滨. 四足机器人液压驱动单元位置控制性能与灵敏度分析研究[D]. 秦皇岛:燕山大学,2015. YU Bin. Analysis of position control performance and sensitivity of hydraulic drive unit for quadruped robot[D]. Qinhuangdao:Yanshan University,2015. [143] BA Kaixian,YU Bin,ZHU Qixin,et al. The position-based impedance control combined with compliance-eliminated and feedforward compensation for HDU of legged robot[J]. Journal of the Franklin Institute,2019,356(16):9232-9253. [144] UGURLU B. Dynamic trot-walking with the hydraulic quadruped robot-HyQ:Analytical trajectory generation and active compliance control[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,November 03-07,2013,Tokyo. New York:IEEE,2013:6044-6051. [145] 杨嘉伟. 液压机器人关节柔顺控制的研究与实现[D]. 哈尔滨:哈尔滨工业大学,2015. YANG Jiawei. Research and implementation of joint compliance control for hydraulic robots[D]. Harbin:Harbin Institute of Technology,2015. [146] 储振. 基于力伺服的液压足式机器人单腿阻抗控制的研究[D]. 哈尔滨:哈尔滨工业大学,2016. CHU Zhen. Research on single leg impedance control of hydraulic legged robot based on force servo[D]. Harbin:Harbin Institute of Technology,2016. [147] ZHU Qixin,YU Bin,HUANG Zhipeng,et al. State feedback-based impedance control for legged robot hydraulic drive unit via full-dimensional state observer[J]. International Journal of Advanced Robotic Systems,2020,17(3):1-15. [148] BA Kaixian,YU Bin,KONG Xiangdong,et al. The dynamic compliance and its compensation control research of the highly integrated valve-controlled cylinder position control system[J]. International Journal of Control,Automation and Systems,2017,15(4):1814-1825. [149] BA Kaixian,YU Bin,LI Wenfeng,et al. Dynamic compliance and its compensation control of hivc force control system[J]. Journal of Electrical Engineering and Technology,2018,13(2):1008-1020. [150] 赵江波,薛塔,王军政. 液压足式机器人单腿变刚度控制弹跳研究[J]. 北京理工大学学报,2018,38(10):1051-1055. ZHAO Jiangbo,XUE Ta,WANG Junzheng. Research on hopping for hydraulic robot leg via the variable stiffness control[J]. Transactions of Beijing Institute of Technology,2018,38(10):1051-1055. [151] HUA Zisen,RONG Xuewen,LI Yibin,et al. Active compliance control on the hydraulic quadruped robot with passive compliant servo actuator[J]. IEEE Access,2019,7:163449-163460. [152] 周洪旭. 四足液压机器人三自由度阻抗控制研究[D]. 哈尔滨:哈尔滨工业大学,2020. ZHOU Hongxu. Research on 3-dof impedance control method for hydraulic quadruped[D]. Harbin:Harbin Institute of Technology,2020. [153] 张聪. 四足机器人运动过程中足端力估计与单腿阻抗控制方法研究[D]. 长沙:国防科技大学,2020. ZHANG Cong. Research on foot force estimation and single-leg impedance control method during quadruped robot movement[D]. Changsha:National University of Defense Technology,2020. [154] ZHU Rui,YANG Qingjun,SONG Jiaxing,et al. Research and improvement on active compliance control of hydraulic quadruped robot[J]. International Journal of Control,Automation and Systems,2021,19:1931-1943 [155] ZHANG Xiaoxing,YI Haoyuan,LIU Junjun,et al. A bio-inspired compliance planning and implementation method for hydraulically actuated quadruped robots with consideration of ground stiffness[J]. Sensors,2021,21(8):2838. |
[1] | 朱琦歆, 俞滨, 王春雨, 巴凯先, 孔祥东. 液压驱动单元基于力的阻抗控制系统前馈抗扰控制研究[J]. 机械工程学报, 2023, 59(4): 295-307. |
[2] | 罗俊林, 吴维, 邹天刚, 苑士华, 韦春辉. 静液压驱动车辆加速过程动态特性研究[J]. 机械工程学报, 2023, 59(16): 254-262. |
[3] | 刘逸群, 陆培栋, 张志鹏, 王剑锋, 张京明, 丁亮, 高海波. 松软地质上机器人足-地动力学建模与试验[J]. 机械工程学报, 2022, 58(5): 8-17. |
[4] | 俞滨, 李化顺, 巴凯先, 郑博寒, 李景彬, 袁立鹏. 足式机器人轻量化液压油源匹配设计方法研究[J]. 机械工程学报, 2021, 57(24): 58-65. |
[5] | 巴凯先, 康岩, 俞滨, 付康平, 黄智鹏, 徐悦鹏, 袁立鹏, 孔祥东. 足式机器人轻量化液压驱动执行器质量建模及灵敏度分析[J]. 机械工程学报, 2021, 57(24): 39-48,82. |
[6] | 牛丽周, 丁亮, 高海波, 杨怀广, 苏杨, 李楠. 软体足式机器人驱动、建模与仿真研究综述[J]. 机械工程学报, 2021, 57(19): 1-20. |
[7] | 刘常海, 胡敏, 杨庆俊, 冯伟, 包钢, 曾亿山. 波浪能发电半物理仿真试验技术研究[J]. 机械工程学报, 2021, 57(10): 286-296. |
[8] | 徐鹏, 丁亮, 高海波, 周如意, 李楠, 邓宗全. 考虑足地作用的足式机器人环境表征与路径规划[J]. 机械工程学报, 2020, 56(23): 21-33. |
[9] | 杨君子,冯桂宏,张炳义. 机械臂用电动螺杆直驱永磁同步电机设计与分析[J]. 电气工程学报, 2018, 13(8): 32-36. |
[10] | 俞滨, 巴凯先, 王东坤, 刘雅梁, 李文锋, 孔祥东. 液压驱动单元位置控制系统前馈补偿控制研究[J]. 机械工程学报, 2018, 54(20): 159-169. |
[11] | 巴凯先, 孔祥东, 朱琦歆, 李春贺, 赵华龙, 俞滨. 液压驱动单元基于位置/力的阻抗控制 机理分析与试验研究[J]. 机械工程学报, 2017, 53(12): 172-185. |
[12] | 柯贤锋, 王军政, 何玉东, 汪首坤, 赵江波. 基于力反馈的液压足式机器人主/被动柔顺性控制*[J]. 机械工程学报, 2017, 53(1): 13-20. |
[13] | 何玉东, 王军政, 柯贤锋, 汪首坤. 足式机器人的稳定行走*[J]. 机械工程学报, 2016, 52(21): 1-7. |
[14] | 刘逸群, 邓宗全, 刘振, 丁亮, 高海波, 李宇超. 液压驱动六足机器人一种低冲击运动规划方法[J]. 机械工程学报, 2015, 51(3): 10-17. |
[15] | 沈海阔, 丁万, 仝龙飞, 黄齐来, 姚燕安. 液压驱动缩放支链的并联式滚动机器人[J]. 机械工程学报, 2015, 51(19): 28-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||