[1] 王立鹏, 王军政, 汪首坤, 等. 基于足端轨迹规划算法的液压四足机器人步态控制策略[J]. 机械工程学报, 2013, 49(1):39-44. WANG Lipeng, WANG Junzheng, WANG Shoukun, et al. Strategy of foot trajectory generation for hydraulic quadruped robots gait planning[J]. Journal of Mechanical Engineering, 2013, 49(1):39-44.
[2] IRAWAN A, NONAMI K.Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain[J].Journal of Field Robotics, 2011, 28(5):690-713.
[3] 丁良宏, 王润孝, 冯华山, 等. 浅析BigDog四足机器人[J]. 中国机械工程, 2012, 23(5):505-514. DING Lianghong, WANG Runxiao, FENG Huashan, at al. Brief analysis of a bigdog quadruped robot[J]. Chinese Journal of Mechanical Engineering, 2012, 23(5):505-514.
[4] XU Z, GAO J Y, LI H, et al. The modeling and controlling of electrohydraulic actuator for quadruped robot based on fuzzy proportion integration differentiation controller[J]. Proc. IMechE, Part C:Journal of Mechanical Engineering and Science, 2014, 228(14):2557-2568.
[5] 孔祥东, 俞滨, 权凌霄, 等. 四足仿生机器人液压驱动单元轨迹灵敏度分析[J].机械工程学报, 2013, 49(14):171-175. KONG Xiangdong, YU Bin, QUAN Lingxiao, et al.Trajectory sensitivity analysis of hydraulic drive unit of quadruped bionic robot[J].Journal of Mechanical Engineering, 2013, 49(14):171-175.
[6] LI M T, JIANG Z Y, WANG P F, et al. Control of a quadruped robot with bionic springy legs in trotting gait[J]. Journal of Bionic Engineering, 2014, 11(2):188-198.
[7] KIMURA H, FUKUOKA Y, COHEN A H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts[J]. International Journal of Robotics Research, 2003, 22(3):187-202.
[8] POULAKAKIS I, SMITH J A, BUEHLER M. Modeling and experiments of untethered quadrupedal running with a bounding gait:The scout ii robot[J]. International Journal of Robotics Research, 2005, 24(4):239-256.
[9] NICHOL J G, SINGH S P N, WALDRON K J, et al. System design of a quadrupedal galloping machine[J]. International Journal of Robotics Research, 2004, 23:1013-1027.
[10] SEOK S, WANG A, MENG Y C, et al. Design principles for highly efficient quadrupeds and implementation on the MIT cheetah robot[C]//IEEE International Conference on Robotics and Automation. IEEE, 2013:3307-3312.
[11] PLAYTER R, BUEHLER M, RAIBERT M. BigDog[C]//Proc. of SPIE. Orlando,USA,2006:62302O.
[12] SEMINI C, BARASUOL V, BOAVENTURA T, et al. Towards versatile legged robots through active impedance control[J]. International Journal of Robotics Research, 2015, 34(7):1003-1020.
[13] RONG X, LI Y, RUAN J, LI B. Design and simulation for a hydraulic actuated quadruped robot[J]. Journal of Mechanical Science and Technology, 2012, 26(4):1171-1177.
[14] FOCCHI M, BARASUOL V, HAVOUTIS I, et al. Local reflex generation for obstacle negotiation in quadrupedal locomotion[C]//International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, 2015:443-450.
[15] HUTTER M, GEHRING C, BLOESCH M, et al. Starleth:A compliant quadrupedal robot for fast, efficient, and versatile locomotion[C]//15th International Conference on Climbing and Walking Robot-CLAWAR, 2012:904.
[16] WON D, AND KIM W. Disturbance observer based backstepping for position control of electro-hydraulic systems[J]. International Journal of Control, Automation and Systems, 2015, 13(2):488-493.
[17] YAO J Y, JIAO Z X, MA D W. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping[J]. IEEE Trans. on Industrial Electronics, 2014, 61(11):6285-6293.
[18] KOMSTA J, VAN O N, ANTOSZKIEWICZ P. Integral sliding mode compensator for load pressure control of die-cushion cylinder drive[J]. Control Engineering Practice, 2013, 21(5):708-718.
[19] HE Y D, WANG J Z,HAO R J. Adaptive robust dead-zone compensation control of electro-hydraulic servo systems with load disturbance rejection[J]. Journal of Systems Science and Complexity, 2015, 28(2):341-359.
[20] KOOLSI G E, FEKI M, AND DERBEL N. Control of a hydraulic servo system using sliding mode with an integral and realizable reference compensation[J]. Journal of Control Engineering and Applied Informatics, 2015, 17(1):111-119.
[21] KONG X D, YU B, QUAN L X, et al. Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit[J]. Chinese Journal of Mechanical Engineering, 2015, 28(5):999-1011.
[22] KONG X D, BA K X, YU B, et al. Trajectory sensitivity analysis of first order and second order on position control system of highly integrated valve-controlled clinder[J]. Journal of Mechanical Science and Technology, 2015, 29(10):4445-4464.
[23] 巴凯先,孔祥东,朱琦歆,等. 液压驱动单元基于位置/力的阻抗控制与实验研究[J]. 机械工程学报,2017, 53(12):172-186. BA Kaixian, KONG Xiangdong, ZHU Qixin, et al.Mechanism analysis and experimental research of based on the position/force control impedance on hydraulic drive unit[J]. Journal of Mechanical Engineering,2017,53(11):172-186.
[24] BA K X, YU B, KONG X D, et al. The dynamic compliance and its compensation control research of the highly integrated valve-controlled cylinder position control system[J]. International Journal of Control, Automation and Systems, 2017, 15(4):1814-1825. |