机械工程学报 ›› 2023, Vol. 59 ›› Issue (19): 65-80.doi: 10.3901/JME.2023.19.065
何畅1,2, 熊蔡华1,2, 陈文斌1,2
收稿日期:
2023-06-21
修回日期:
2023-09-06
出版日期:
2023-10-05
发布日期:
2023-12-11
通讯作者:
熊蔡华(通信作者),男,1965年出生,博士,教授,博士研究生导师。主要研究方向为机器人学、康复医疗装备等。E-mail:chxiong@hust.edu.cn
作者简介:
何畅,男,1992年出生,博士。主要研究方向为康复机器人,类人机器人运动规划。E-mail:hechang@hust.edu.cn;陈文斌,男,1980年出生,博士,教授,博士研究生导师。主要研究方向为人体运动行为与认知、穿戴式机器人、人机混合智能系统和机器人运动规划等。E-mail:wbchen@hust.edu.cn
基金资助:
HE Chang1,2, XIONG Caihua1,2, CHEN Wenbin1,2
Received:
2023-06-21
Revised:
2023-09-06
Online:
2023-10-05
Published:
2023-12-11
摘要: 综合运用现代医学和工程科学方法,研制重塑受损脑神经环路的康复机器人,是人机共融机器人学前沿研究的重要科学目标,也是当前国际上亟待破解的难题之一,面临医学、信息科学、机械工程等多学科的挑战。以人体上肢康复机器人为对象,系统深入地剖析了当前最先进的上肢康复机器人及其临床应用情况,具体从人肢体自然运动规律及其机械复现原理,机械运动、神经刺激原理,人-机主被动协调控制等角度,比较了当前各种康复装备的特点,讨论了肢体康复机器人的未来发展趋势,阐述了脑损伤康复机器人走向临床应用需要破解的关键核心技术问题。
中图分类号:
何畅, 熊蔡华, 陈文斌. 脑损伤上肢康复机器人及其临床应用研究[J]. 机械工程学报, 2023, 59(19): 65-80.
HE Chang, XIONG Caihua, CHEN Wenbin. Review on Upper-limb Rehabilitation Robots for Patients with Brain Injury and Clinical Applications[J]. Journal of Mechanical Engineering, 2023, 59(19): 65-80.
[1] FEIGIN V,NICHOLS E,ALAM T,et al. Global,regional,and national burden of neurological disorders,1990-2016:A systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurology,2019,18(5):459-480. [2] MORAGA P,GBD Causes of Death Collaborators. Global,regional,and national age-sex specific mortality for 264 causes of death,1980-2016:A systematic analysis for the Global Burden of Disease Study 2016[J]. The Lancet,2017,390(10100):1151-1210. [3] STINEAR C. Prediction of recovery of motor function after stroke[J]. Lancet Neurology,2010,9(12):1228-1232. [4] WINSTEIN C J,STEIN J,ARENA R,et al. Guidelines for adult stroke rehabilitation and recovery:A guideline for healthcare professionals from the American heart association/american stroke association[J]. Stroke,2016,47(6):98-169. [5] FRENCH B,THOMAS L,LEATHLEY M,et al. Repetitive task training for improving functional ability after stroke[J]. Cochrane Database of Systematic Reviews,2007,11(4):1-115. [6] DURET C,GROSMAIRE A G,KREBS H I. Robot-assisted therapy in upper extremity hemiparesis:Overview of an evidence-based approach[J]. Frontiers in Neurology,2019,10(1):1-8. [7] BERTANI R,MELEGARI C,DE COLA M,et al. Effects of robot-assisted upper limb rehabilitation in stroke patients:A systematic review with meta-analysis[J]. Neurological Sciences,2017,38(9):1561-1569. [8] LANGHORNE P,BERNHARDT J,KWAKKEL G. Stroke care 2 stroke rehabilitation[J]. Lancet,2011,377(9778):1693-1702. [9] TAKAHASHI C D,DER-YEGHIAIAN L,LE V,et al. Robot-based hand motor therapy after stroke[J]. Brain,2008,131(2):425-437. [10] REINKENSMEYER DJ,DIETZ V. Neurorehabilitation Technology[M]. New York:Springer,2016. [11] KULIC D,VENTURE G,YAMANE K,et al. Anthropomorphic movement analysis and synthesis:A survey of methods and applications[J]. IEEE Transactions on Robotics,2016,32(4):776-795. [12] KREBS H I,HOGAN N,AISEN M L,et al. Robot-aided neurorehabilitation[J]. IEEE Transactions on Rehabilitation Engineering,1998,6(1):75-87. [13] AISEN M,KREBS H,HOGAN N,et al. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke[J]. Archives of Neurology,1997,54(4):443-446. [14] LUM P S,BURGAR C G,SHOR P C. Use of the MIME robotic system to retrain multijoint reaching in post-stroke hemiparesis:Why some movement patterns work better than others[C]//Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439). Cancun,Mexico:IEEE,2003:1475-1478. [15] HESSE S,WERNER C,POHL M,et al. Computerized arm training improves the motor control of the severely affected arm after stroke[J]. Stroke,2005,36(9):1960-1966. [16] BOVOLENTA F,GOLDONI M,CLERICI P,et al. Robot therapy for functional recovery of the upper limbs:A pilot study on patients after stroke[J]. Journal of Rehabilitation Medicine,2009,41(12):971-975. [17] TAKEBAYASHI T,TAKAHASHI K,OKITA Y,et al. Impact of the robotic-assistance level on upper extremity function in stroke patients receiving adjunct robotic rehabilitation:Sub-analysis of a randomized clinical trial[J]. Journal of NeuroEngineering and Rehabilitation,2022,19(1):25-35. [18] TAKEBAYASHI T,TAKAHASHI K,AMANO S,et al. Robot-assisted training as self-training for upper-limb hemiplegia in chronic stroke:A randomized controlled trial[J]. Stroke,2022,53(7):2182-2191. [19] 王昱,吴向东,施长城,等. 基于力跟踪的上肢康复机器人系统中视觉与触觉反馈融合技术研究[J].中国康复理论与实践,2021,27(4):478-486. WANG Yu,WU Xiangdong,SHI Changcheng,et al. Visual and haptic feedback fusion based on force tracking in upper-limb rehabilitation robot system[J]. Chinese Journal of Rehabilitation Theory and Practice,2021,27(4):478-486. [20] 夏鹏鹏,韩建海,李辽远,等. 三维空间末端牵引上肢康复机器人轨迹规划研究[J]. 中国康复医学杂志,2021(11):1414-1419. XIA Pengpeng,HAN Jianhai,LI Liaoyuan,et al. Research on trajectory planning of three-dimensional space end traction upper limb rehabilitation robot[J]. Chinese Journal of Rehabilitation Medicine,2021(11):1414-1419. [21] 林高,张道辉,赵新刚. 适应患者个体差异的上肢康复机器人直接示教技术[J]. 中国康复理论与实践,2022(10):1231-1240. LIN Gao,ZHANG Daohui,ZHAO Xingang. Direct teaching technology of upper limb rehabilitation robot adapting to individual patient differences[J]. Chinese Journal of Rehabilitation Theory and Practice,2022(10):1231-1240. [22] ROSATI G,GALLINA P,MASIERO S. Design,implementation and clinical tests of a wire-based robot for neurorehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007,15(4):560-569. [23] LOUREIRO R,AMIRABDOLLAHIAN F,TOPPING M,et al. Upper limb robot mediated stroke therapy-GENTLE/s approach[J]. Autonomous Robots,2003,15(1):35-51. [24] MAO Y,JIN X,DUTTA G G,et al. Human movement training with a cable driven arm exoskeleton (CAREX)[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2015,23(1):84-92. [25] MAO Y,AGRAWAL S K. Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation[J]. IEEE Transactions on Robotics,2012,28(4):922-931. [26] APRILE I,GERMANOTTA M,CRUCIANI A,et al. Upper limb robotic rehabilitation after stroke:A multicenter,randomized clinical trial[J]. Journal of Neurologic Physical Therapy,2020,44(1):3-14. [27] 徐晨阳,张建斌,陈伟海,等. 绳驱动上肢外骨骼康复机器人穿戴机构设计[J]. 机器人,2021,43(4):463-472. XU Chenyang,ZHANG Jianbin,CHEN Weihai,et al. Design of wearing mechanism for rope driven upper limb exoskeleton rehabilitation robot[J]. Robot,2021,43(4):463-472. [28] PLOOIJ M,APTE S,KELLER U,et al. Neglected physical human-robot interaction may explain variable outcomes in gait neurorehabilitation research[J]. Science Robotics,2021,6(58). [29] NEF T,RIENER R. Neurorehabilitation technology[M]. London:Springer,2012. [30] LU L,TAN Y,KLAIC M,et al. Evaluating rehabilitation progress using motion features identified by machine learning[J]. IEEE Transactions on Biomedical Engineering,2021,68(4):1417-1428. [31] CLAUDIA RUDHE U A. Reliability of movement workspace measurements in a passive arm orthosis used in spinal cord injury rehabilitation[J]. Journal of Neuroengineering and Rehabilitation,2012,1(9):1-8. [32] SEHLE A,STUERNER J,HASSA T,et al. Behavioral and neurophysiological effects of an intensified robot-assisted therapy in subacute stroke:A case control study[J]. Journal of NeuroEngineering and Rehabilitation,2021,18(1):6. [33] PROIETTI T,GUIGON E,ROBY-BRAMI A,et al. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton[J]. Journal of Neuroengineering and Rehabilitation,2017,14(1):1-19. [34] JARRASSE N,MOREL G. Connecting a Human Limb to an Exoskeleton[J]. IEEE Transactions on Robotics,2012,28(3):697-709. [35] PIRONDINI E,COSCIA M,MARCHESCHI S,et al. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities:A pilot study on healthy subjects[J]. Journal of Neuroengineering and Rehabilitation,2016,13(1):1-21. [36] FRISOLI A,PROCOPIO C,CHISARI C,et al. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke[J]. Journal of Neuroengineering and Rehabilitation,2012,9(1):1-16. [37] CARIGNAN C,TANG J,RODERICK S. Development of an exoskeleton haptic interface for virtual task training[Z]. 2009. [38] PERRY J C,ROSEN J,BURNS S. Upper-limb powered exoskeleton design[J]. IEEE/ASME Transactions on Mechatronics,2007,12(4):408-417. [39] KIM B,DESHPANDE A D. An upper-body rehabilitation exoskeleton harmony with an anatomical shoulder mechanism:Design,modeling,control,and performance evaluation[J]. The International Journal of Robotics Research,2017,36(4):414-435. [40] REINKENSMEYER D J,WOLBRECHT E T,CHAN V,et al. Comparison of three-dimensional,assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional tabletop therapy after chronic stroke[J]. American journal of physical medicine & rehabilitation,2012,91(Suppl. 3):S232-41. [41] ZIMMERMANN Y,FORINO A,RIENER R,et al. ANYexo:A versatile and dynamic upper-limb rehabilitation robot[J]. IEEE Robotics and Automation Letters,2019,4(4):3649-3656. [42] HE C,XIONG C H,CHEN Z J,et al. Preliminary assessment of a postural synergy-based exoskeleton for post-stroke upper limb rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2021,29(1):1795-1805. [43] 王文东,肖孟涵,孔德智,等. 基于人机耦合模型的上肢康复外骨骼闭环PD迭代控制方法[J]. 机械工程学报,2021,57(21):11-21. WANG Wendong,XIAO Menghan,KONG Dezhi,et al. A closed-loop PD iterative control method for upper limb rehabilitation exoskeleton based on human-machine coupling model[J]. Journal of Mechanical Engineering,2021,57(21):11-21. [44] HOUSMAN S,SCOTT K,REINKENSMEYER D. A randomized controlled trial of gravity-supported,computer-enhanced arm exercise for individuals with severe hemiparesis[J]. Neurorehabilitation And Neural Repair,2009,23(5):505-514. [45] METZGER J,LAMBERCY O,GASSERT R. Performance comparison of interaction control strategies on a hand rehabilitation robot[C]//Swiss Federal Institutes of Technology Domain. 2015:846-851. [46] PETERS H T,PAGE S J,PERSCH A. Giving them a hand:wearing a myoelectric elbow-wrist-hand orthosis reduces upper extremity impairment in chronic stroke[J]. Archives of Physical Medicine and Rehabilitation,2017,98(9):1821-1827. [47] GEORGARAKIS A,XILOYANNIS M,WOLF P,et al. A textile exomuscle that assists the shoulder during functional movements for everyday life[J]. Nature Machine Intelligence,2022,4(6):574-582. [48] KOH T,CHENG N,YAP H,et al. Design of a soft robotic elbow sleeve with passive and intent-controlled actuation[J]. Frontiers In Neuroscience,2017,11:1. [49] AMBROSINI E,FERRANTE S,ZAJC J,et al. The combined action of a passive exoskeleton and an EMG-controlled neuroprosthesis for upper limb stroke rehabilitation:First results of the RETRAINER project[C]//2017 International Conference on Rehabilitation Robotics (ICORR). London:IEEE,2017:56-61. [50] NORONHA B,NG C,LITTLE K,et al. Soft,lightweight wearable robots to support the upper limb in activities of daily living:A feasibility study on chronic stroke patients[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2022,30(1):1401-1411. [51] LI N,YANG T,YU P,et al. Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications[J]. Bioinspiration & Biomimetics,2018,13(6):1. [52] LI N,YANG Y,LI G,et al. Multi-sensor fusion-based mirror adaptive assist-as-needed control strategy of a soft exoskeleton for upper limb rehabilitation[J]. IEEE Transactions on Automation Science and Engineering,2022,30(1):1-13. [53] 姚建涛,李海利,曹开彬,等. 柔性可穿戴腕部动力手套的设计与分析[J]. 机械工程学报,2018,54(19):1-9. YAO Jiantao,LI Haili,CAO Kaibin,et al. Design and analysis of flexible wearable wrist power gloves[J]. Journal of Mechanical Engineering,2018,54(19):1-9. [54] VEERBEEK J M,LANGBROEK-AMERSFOORT A C,VAN WEGEN E E H,et al. Effects of robot-assisted therapy for the upper limb after stroke:A systematic review and meta-analysis[J]. Neurorehabilitation and Neural Repair,2017,31(2):107-121. [55] DUPONT P E,NELSON B J,GOLDFARB M,et al. A decade retrospective of medical robotics research from 2010 to 2020[J]. Science Robotics,2021,6(60):eabi8017. [56] DEHEM S,GILLIAUX M,STOQUART G,et al. Effectiveness of upper-limb robotic-assisted therapy in the early rehabilitation phase after stroke:A single-blind,randomised,controlled trial[J]. Annals of Physical and Rehabilitation Medicine,2019,62(5):313-320. [57] SEVERINI G,KOENIG A,ADANS-DESTER C,et al. Robot-driven locomotor perturbations reveal synergy-mediated,context-dependent feedforward and feedback mechanisms of adaptation[J]. Scientific Reports,2020,10(1):5104-5104. [58] LO A C,GUARINO P D,RICHARDS L G,et al. Robot-Assisted therapy for long-term upper-limb impairment after stroke[J]. New England Journal of Medicine,2010,362(19):1772-1783. [59] RODGERS H,BOSOMWORTH H,KREBS H I,et al. Robot assisted training for the upper limb after stroke (RATULS):A multicentre randomised controlled trial[J]. The Lancet,2019,394(10192):51-62. [60] KLAMROTH-MARGANSKA V,BLANCO J,CAMPEN K,et al. Three-dimensional,task-specific robot therapy of the arm after stroke:A multicentre,parallel-group randomised trial[J]. Lancet Neurology,2014,13(2):159-166. [61] MEHRHOLZ J,POHL M,PLATZ T,et al. Electromechanical and robot-assisted arm training for improving activities of daily living,arm function,and arm muscle strength after stroke[J]. Cochrane Database of Systematic Reviews,2018(9):1-134. [62] FERREIRA F M R,CHAVES M E A,OLIVEIRA V C,et al. Effectiveness of robot therapy on body function and structure in people with limited upper limb function:A systematic review and meta-analysis[J]. Plos One,2018,13(7):21. [63] JARRASSE N,PROIETTI T,CROCHER V,et al. Robotic exoskeletons:A perspective for the rehabilitation of arm coordination in stroke patients[J]. Frontiers in Human Neuroscience,2014,8(1):1-13. [64] LAURETTI C,CORDELLA F,CIANCIO A L,et al. Learning by demonstration for motion planning of upper-limb exoskeletons[J]. Frontiers in Neurorobotics,2018,12(1):1-14. [65] PASQUINI M,JAMES N D,DEWANY I,et al. Preclinical upper limb neurorobotic platform to assess,rehabilitate,and develop therapies[J]. Science Robotics,2022,7(64):eabk2378. [66] SHENG B,ZHANG Y,MENG W,et al. Bilateral robots for upper-limb stroke rehabilitation:State of the art and future prospects[J]. Medical Engineering & Physics,2016,38(7):587-606. [67] GUIDALI M,DUSCHAU-WICKE A,BROGGI S,et al. A robotic system to train activities of daily living in a virtual environment[J]. Medical & Biological Engineering & Computing,2011,49(10):1213-1223. [68] SELEN L P J,BEEK P J,VAN DIEEN J H. Impedance is modulated to meet accuracy demands during goal-directed arm movements[J]. Experimental Brain Research,2006,172(1):129-138. [69] MORASSO P. Spatial control of arm movements[J]. Experimental Brain Research,1981,42(2):223-227. [70] CHEN W B,XIONG C H,YUE S G. On configuration trajectory formation in spatiotemporal profile for reproducing human hand reaching movement[J]. IEEE Transactions on Cybernetics,2016,46(3):804-816. [71] SCOTT J. YOUNG,JAY PRATT,TOM CHAU. Target-directed movements at a comfortable pace:Movement duration and fitts's law[J]. Journal of Motor Behavior,2009,41:339-346. [72] PARK C,PAN J,MANOCHA D. High-DOF robots in dynamic environments using incremental trajectory optimization[J]. International Journal of Humanoid Robotics,2014,11(2):1441001. [73] MATSUI T,HONDA M,NAKAZAWA N. A new optimal control model for reproducing human arm's two-point reaching movements:A modified minimum torque change model[C]//2006 IEEE International Conference on Robotics and Biomimetics,Kunming,China,2006:1541-1546 [74] LIU G,SONG C,ZANG X,et al. Reactive execution of learned tasks with real-time collision avoidance in a dynamic environment[J]. IEEE Access,2018,6(1):57366-57375. [75] AVERTA G,DELLA SANTINA C,VALENZA G,et al. Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots[J]. Journal of Neuroengineering and Rehabilitation,2020,17(1):1-15. [76] CHEN J,ZHONG S,KANG E,et al. Realizing human-like manipulation with a musculoskeletal system and biologically inspired control scheme[J]. Neurocomputing,2019,339:116-129. [77] ANGELINI F,DELLA SANTINA C,GARABINI M,et al. Control architecture for human-like motion with applications to articulated soft robots[J]. Frontiers in Robotics and AI,2020,7(1):1-17. [78] TIECK J C V,STEFFEN L,KAISER J,et al. Combining motor primitives for perception driven target reaching with spiking neurons[J]. International Journal of Cognitive Informatics and Natural Intelligence,2019,13(1):1-12. [79] LAURETTI C,CORDELLA F,GUGLIELMELLI E,et al. Learning by demonstration for planning activities of daily living in rehabilitation and assistive robotics[J]. IEEE Robotics and Automation Letters,2017,2(3):1375-1382. [80] DIAMOND A,HOLLAND O E. Reaching control of a full-torso,modelled musculoskeletal robot using muscle synergies emergent under reinforcement learning[J]. Bioinspiration & Biomimetics,2014,9(1):1. [81] VITIELLO N,LENZI T,ROCCELLA S,et al. NEUROExos:A powered elbow exoskeleton for physical rehabilitation[J]. IEEE Transactions on Robotics,2013,29(1):220-235. [82] 李剑锋,刘钧辉,张雷雨,等. 人机相容型肩关节康复外骨骼机构的运动学与灵活性分析[J]. 机械工程学报,2018(3):46-54. LI Jianfeng,LIU Junhui,ZHANG Leiyu,et al. Kinematics and flexibility analysis of human-machine compatible shoulder joint rehabilitation exoskeleton mechanism[J]. Journal of Mechanical Engineering,2018(3):46-54. [83] LIU K,XIONG C H,HE L,et al. Postural synergy based design of exoskeleton robot replicating human arm reaching movements[J]. Robotics and Autonomous Systems,2018,99:84-96. [84] DAY K A,BASTIAN A J. Providing low-dimensional feedback of a high-dimensional movement allows for improved performance of a skilled walking task[J]. Sci Rep,2019,9(1):1-13. [85] LEMON R. Descending pathways in motor control[J]. Annual Review of Neuroscience,2008,31(1):195-218. [86] WARD N,NEWTON J,SWAYNE O,et al. Motor system activation after subcortical stroke depends on corticospinal system integrity[J]. Brain,2006,129(1):809-819. [87] BYBLOW W,STINEAR C,BARBER P,et al. Proportional recovery after stroke depends on corticomotor integrity[J]. Annals of Neurology,2015,78(6):848-859. [88] JORGENSEN H,REITH J,NAKAYAMA H,et al. What determines good recovery in patients with the most severe strokes? The Copenhagen stroke study[J]. Stroke,1999,30(10):2008-2012. [89] STEIN R,EVERAERT D,ROY F,et al. Facilitation of corticospinal connections in able-bodied people and people with central nervous system disorders using eight interventions[J]. Journal of Clinical Neurophysiology,2013,30(1):66-78. [90] ADA L,DORSCH S,CANNING C. Strengthening interventions increase strength and improve activity after stroke:A systematic review[J]. Australian Journal of Physiotherapy,2006,52(4):241-248. [91] DIETZ V,FOUAD K. Restoration of sensorimotor functions after spinal cord injury[J]. Brain,2014,137:654-667. [92] BEER R,ELLIS M,HOLUBAR B,et al. Impact of gravity loading on post-stroke reaching and its relationship to weakness[J]. Muscle & Nerve,2007,36(2):242-250. [93] LAN Y,YAO J,DEWALD J,et al. Increased shoulder abduction loads decreases volitional finger extension in individuals with chronic stroke:Preliminary findings[C]//Northwestern University. 2014:5808-5811. [94] KILBREATH S,HEARD R. Frequency of hand use in healthy older persons[J]. Australian Journal of Physiotherapy,2005,51(2):119-122. [95] KWAKKEL G,VEERBEEK J M,VAN WEGEN E E H,et al. Constraint-induced movement therapy after stroke[J]. The Lancet Neurology,2015,14(2):224-234. [96] STOYKOV M,LEWIS G,CORCOS D. Comparison of bilateral and unilateral training for upper extremity hemiparesis in stroke[J]. Neurorehabilitation and Neural Repair,2009,23(9):945-953. [97] BEEKHUIZEN K,FIELD-FOTE E. Massed practice versus massed practice with a stimulation:Effects on upper extremity function and cortical plasticity in individuals with incomplete cervical spinal cord injury[J]. Neurorehabilitation and Neural Repair,2005,19(1):33-45. [98] MILOSEVIC M,MARQUEZ-CHIN C,MASANI K,et al. Why brain-controlled neuroprosthetics matter:Mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation[J]. Biomedical Engineering Online,2020,19(1):1-15. [99] TAKAHASHI M,TAKEDA K,OTAKA Y,et al. Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation:A feasibility study[J]. Journal of Neuroengineering and Rehabilitation,2012,9(1):1-16. [100] JIANG Y,ZHANG D,ZHANG J,et al. A randomized controlled trial of repetitive peripheral magnetic stimulation applied in early subacute stroke:Effects on severe upper-limb impairment[J]. Clinical Rehabilitation,2022,36(5):693-702. [101] LI J,MENG X,LI R,et al. Effects of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper limb motor dysfunction in patients with subacute cerebral infarction[J]. Neural Regeneration Research,2016,11(10):1584-1590. [102] YANG Y,PAN H,PAN W,et al. Repetitive transcranial magnetic stimulation on the affected hemisphere enhances hand functional recovery in subacute adult stroke patients:A randomized trial[J]. Frontiers in Aging Neuroscience,2021,13(1):1-15. [103] BARDI E,DALLA GASPERINA S,PEDROCCHI A,et al. Adaptive cooperative control for hybrid fes-robotic upper limb devices:A simulation study[C]//Polytechnic University of Milan. 2021:6398-6401. [104] GHARABAGHI A,KRAUS D,LEAO M T,et al. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation:enhancing motor cortex excitability for neurorehabilitation[J]. Frontiers in Human Neuroscience,2014,8:00122. [105] MAKOWSKI N S,KNUTSON J S,CHAE J,et al. Control of robotic assistance using poststroke residual voluntary effort[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2015,23(2):221-231. [106] TACCHINO G,GANDOLLA M,COELLI S,et al. EEG analysis during active and assisted repetitive movements:Evidence for differences in neural engagement[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2017,25(6):761-771. [107] MIHARA M,HATTORI N,HATAKENAKA M,et al. Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims a pilot study[J]. Stroke,2013,44(4):1091-1098. [108] BENABID A L,COSTECALDE T,ELISEYEV A,et al. An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient:A proof-of-concept demonstration[J]. The Lancet Neurology,2019,18(12):1112-1122. [109] BORTON D,MICERA S,MILLÁN J del R,et al. Personalized neuroprosthetics[J]. Science Translational Medicine,2013,5(210):210rv2-210rv2. [110] LOSEY D P,O'MALLEY M K. Trajectory deformations from physical human-robot interaction[J]. IEEE Transactions on Robotics,2018,34(1):126-138. [111] SAADATZI M,LONG D C,CELIK O. Comparison of human-robot interaction torque estimation methods in a wrist rehabilitation exoskeleton[J]. Journal of Intelligent & Robotic Systems,2019,94(3-4):565-581. [112] XING L,WANG X,WANG J. A motion intention-based upper limb rehabilitation training system to stimulate motor nerve through virtual reality[J]. International Journal of Advanced Robotic Systems,2017,14(6):17-29. [113] LAUMOND J P,MANSARD N,LASSERRE J B. Geometric and numerical foundations of movements[M]. 2017. [114] 吴青聪,王兴松,吴洪涛,等. 上肢康复外骨骼机器人的模糊滑模导纳控制[J]. 机器人,2018(4):457-465. WU Qingsong,WANG Xingsong,WU Hongtao,et al. Fuzzy sliding mode admittance control of upper limb rehabilitation exoskeleton robot[J]. Robot,2018(4):457-465. [115] ZIMMERMANN Y,SOMMERHALDER M,WOLF P,et al. ANYexo 2.0:A fully actuated upper-limb exoskeleton for manipulation and joint-oriented training in all stages of rehabilitation[J]. IEEE Transactions on Robotics,2023:1-20. [116] HAMAYA M,MATSUBARA T,TERAMAE T,et al. Design of physical user-robot interactions for model identification of soft actuators on exoskeleton robots[J]. The International Journal of Robotics Research,2021,40(1):397-410. [117] CROCHER V,SAHBANI A,ROBERTSON J,et al. Constraining upper limb synergies of hemiparetic patients using a robotic exoskeleton in the perspective of neuro-rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2012,20(3):247-257. [118] 刘冰,李宁,于鹏,等. 上肢康复外骨骼机器人控制方法进展研究[J]. 电子科技大学学报,2020,49(5):643-651. LIU Bing,LI Ning,YU Peng,et al. Progress in control methods for upper limb rehabilitation exoskeleton robots[J]. Journal of University of Electronic Science and Technology of China,2020,49(5):643-651. [119] LACZKO J,SCHEIDT R A,SIMO L S,et al. Inter-joint coordination deficits revealed in the decomposition of endpoint jerk during goal-directed arm movement after stroke[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2017,25(7):798-810. [120] KAEWMANEE T,LIANG H,ARUIN A S. Effect of predictability of the magnitude of a perturbation on anticipatory and compensatory postural adjustments[J]. Experimental Brain Research,2020,238(10):2207-2219. [121] BLANK A,FRENCH J,PEHLIVAN A,et al. Current trends in robot-assisted upper-limb stroke rehabilitation:Promoting patient engagement in therapy[J]. Current Physical Medicine and Rehabilitation Reports,2014,2(3):184-195. [122] EDGERTON V,TILLAKARATNE N,BIGBEE A,et al. Plasticity of the spinal neural circuitry after injury[J]. Annual Review of Neuroscience,2004,27(1):145-167. [123] NUDO R,PLAUTZ E,FROST S. Role of adaptive plasticity in recovery of function after damage to motor cortex[J]. Muscle & Nerve,2001,24(8):1000-1019. [124] PRABHAKARAN S,ZARAHN E,RILEY C,et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke[J]. Neurorehabilitation and Neural Repair,2008,22(1):64-71. [125] KWAKKEL G,KOLLEN B,LINDEMAN E. Understanding the pattern of functional recovery after stroke:Facts and theories[J]. Restorative Neurology and Neuroscience,2004,22(3-5):281-299. [126] WINTERS C,VAN WEGEN E,DAFFERTSHOFER A,et al. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke[J]. Neurorehabilitation and Neural Repair,2015,29(7):614-622. [127] HUANG V,KRAKAUER J. Robotic neurorehabilitation:A computational motor learning perspective[J]. Journal of Neuroengineering and Rehabilitation,2009,6(5):1-13. [128] CAREY L,MACDONELL R,MATYAS T. SENSe:Study of the effectiveness of neurorehabilitation on sensation:A randomized controlled trial[J]. Neurorehabilitation and Neural Repair,2011,25(4):304-313. [129] STEFAN K,KUNESCH E,COHEN L,et al. Induction of plasticity in the human motor cortex by paired associative stimulation[J]. Brain,2000,123(1):572-584. [130] CHEN J,LI X,PAN Q,et al. Effects of non-invasive brain stimulation on motor function after spinal cord injury:A systematic review and meta-analysis[J]. Journal of Neuroengineering and Rehabilitation,2023,20(1):1. [131] LORACH H,GALVEZ A,SPAGNOLO V,et al. Walking naturally after spinal cord injury using a brain-spine interface[J]. Nature,2023,618(7963):126-133. [132] BAEK H,SARIEV A,LEE S,et al. Deep cerebellar low-intensity focused ultrasound stimulation restores interhemispheric balance after ischemic stroke in mice[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2020,28(9):2073-2079. [133] AMBROSINI E,ZAJC J,FERRANTE S,et al. A hybrid robotic system for arm training of stroke survivors:Concept and first evaluation[J]. IEEE Transactions on Biomedical Engineering,2019,66(12):3290-3300. [134] DOLE M,AUBOIROUX V,LANGAR L,et al. A systematic review of the effects of transcranial photobiomodulation on brain activity in humans[J]. Reviews in The Neurosciences,2023(1):1. [135] WAGNER F B,MIGNARDOT J B,LE GOFF-MIGNARDOT C G,et al. Targeted neurotechnology restores walking in humans with spinal cord injury[J]. Nature,2018,563(7729):65-71. [136] LIU L Y,LI Y,LAMONTAGNE A. The effects of error-augmentation versus error-reduction paradigms in robotic therapy to enhance upper extremity performance and recovery post-stroke:A systematic review[J]. J Neuroeng Rehabil,2018,15(1):1-25. [137] ROSENTHAL O,WING A M,WYATT J L,et al. Boosting robot-assisted rehabilitation of stroke hemiparesis by individualized selection of upper limb movements-a pilot study[J]. Journal of Neuroengineering and Rehabilitation,2019,16(1):1-14. [138] SINGH N R,LEFF A P. Advances in the rehabilitation of hemispatial inattention[J]. Current Neurology and Neuroscience Reports,2023,23(3):33-48. [139] JANSSEN H,BERNHARDT J,COLLIER J,et al. An enriched environment improves sensorimotor function post-ischemic stroke[J]. Neurorehabilitation and Neural Repair,2010,24(9):802-813. [140] 陈泽健,王纯,夏楠,等. 上肢机器人在脑卒中上肢本体感觉评估中应用的研究进展[J]. 中华物理医学与康复杂志,2020(3):280-284. CHEN Zejian,WANG Chun,XIA Nan,et al. Research progress on the application of upper limb robots in the assessment of upper limb proprioception in stroke patients[J]. Chinese Journal of Physical Medicine and Rehabilitation,2020(3):280-284. [141] CHEN Z J,GU M H,HE C,et al. Robot-assisted arm training in stroke individuals with unilateral spatial neglect:A pilot study[J]. Frontiers in Neurology,2021,12(1):1-8. [142] VARALTA V,PICELLI A,FONTE C,et al. Effects of contralesional robot-assisted hand training in patients with unilateral spatial neglect following stroke:A case series study[J]. Journal of Neuroengineering snd Rehabilitation,2014,11(1):1-6. [143] MAURA R M,RUEDA PARRA S,STEVENS R E,et al. Literature review of stroke assessment for upper-extremity physical function via EEG,EMG,kinematic,and kinetic measurements and their reliability[J]. Journal of NeuroEngineering and Rehabilitation,2023,20(1):21. |
[1] | 冯吉伟, 殷国栋, 梁晋豪, 庄伟超, 彭湃, 卢彦博, 采国顺, 徐利伟. 考虑介入惩罚因子的智能车辆人机协同控制架构[J]. 机械工程学报, 2024, 60(14): 238-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||