机械工程学报 ›› 2023, Vol. 59 ›› Issue (20): 357-384.doi: 10.3901/JME.2023.20.357
焦宗夏1,2,3,4,5, 吴帅2,3,6, 李洋2,3,6, 张超2,3,6, 靳红涛2,3,6, 舒圣1, 位仁磊1, 李仁洁1, 王易1, 张昊园1, 张亚东1
收稿日期:
2023-07-04
修回日期:
2023-08-25
出版日期:
2023-10-20
发布日期:
2023-12-08
通讯作者:
吴帅(通信作者),男,1980年出生,博士,副教授,博士研究生导师。主要研究方向为智能液压,数字液压系统。E-mail:ws@buaa.edu.cn
作者简介:
焦宗夏,男,1963年出生,博士,教授,博士研究生导师。主要研究方向为电液伺服控制,机载机电系统。E-mail:zxjiao@buaa.edu.cn
基金资助:
JIAO Zongxia1,2,3,4,5, WU Shuai2,3,6, LI Yang2,3,6, ZHANG Chao2,3,6, JIN Hongtao2,3,6, SHU Sheng1, WEI Renlei1, LI Renjie1, WANG Yi1, ZHANG Haoyuan1, ZHANG Yadong1
Received:
2023-07-04
Revised:
2023-08-25
Online:
2023-10-20
Published:
2023-12-08
摘要: 第四次工业革命利用信息化技术促进产业变革,将带我们进入智能化时代。由于液压系统作为核心动力和控制部分,广泛应用于先进制造、航空航天、海洋等重大装备,工业装备的智能化必然会要求液压元件及系统实现智能化。所以,近年来智能液压一直是液压领域的研究热点,推动液压领域进入智能时代,也给液压系统的研究带来新的活力,但也遇到了新的挑战,包括对智能液压系统的理解不一致,缺乏系统综合的研究,成碎片化的点突破等。分析智能液压系统的内涵与演进历程,阐述智能液压系统的架构体系,总结出智能液压系统具有的智能感知、智能调控、智能运维三大特征,并从这三个方面综述国内外的研究进展,揭示智能液压存在的问题和挑战;最后讨论应对挑战的研究路径和发展趋势。
中图分类号:
焦宗夏, 吴帅, 李洋, 张超, 靳红涛, 舒圣, 位仁磊, 李仁洁, 王易, 张昊园, 张亚东. 液压元件及系统智能化发展现状及趋势思考[J]. 机械工程学报, 2023, 59(20): 357-384.
JIAO Zongxia, WU Shuai, LI Yang, ZHANG Chao, JIN Hongtao, SHU Sheng, WEI Renlei, LI Renjie, WANG Yi, ZHANG Haoyuan, ZHANG Yadong. Development Status and Trends of the Intelligence of Hydraulic Components and Systems[J]. Journal of Mechanical Engineering, 2023, 59(20): 357-384.
[1] LEI Y,YANG B,JIANG X,et al. Applications of machine learning to machine fault diagnosis:A review and roadmap[J]. Mechanical Systems and Signal Processing,2020,138:106587. [2] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5):94-104. LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94-104. [3] LI W,HUANG R,LI J,et al. A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios:Theories,applications and challenges[J]. Mechanical Systems and Signal Processing,2022,167:108487. [4] 傅建中. 智能制造装备的发展现状与趋势[J]. 机电工程,2014,31(8):959-962. FU Jianzhong. Development status and trend of intelligent manufacturing equipment[J]. Journal of Mechanical and Electrical Engineering,2014,31(8):959-962. [5] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46. GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46. [6] 蔡锐龙,李晓栋,钱思思. 国内外数控系统技术研究现状与发展趋势[J]. 机械科学与技术, 2016,35(4):493-500. CAI Ruilong,LI Xiaodong,QIAN Sisi. Numerical control system:State of art and trends[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(4):493-500. [7] 陈超,赵升吨,范淑琴,等. 伺服液压机的研究现状及发展趋势[J]. 锻压技术,2015,40(12):1-6. CHEN Chao,ZHAO Shengdun,FAN Shuqin,et al. Advance and trend of servo hydraulic press[J]. Forging and Stamping Technology,2015,40(12):1-6. [8] HALICIOGLU R,DULGER L C,BOZDANA A T. Mechanisms,classifications,and applications of servo presses:A review with comparisons[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2016,230(7):1177-1194. [9] 庄欠伟,龚国芳,杨华勇. 盾构机推进系统分析[J]. 液压与气动,2004(4):11-13. ZHUANG Qianwei,GONG Guofang,YANG Huayong. Analysis of a thrust system of shield tunneling machines[J]. Chinese Hydraulics and Pneumatics,2004(4):11-13. [10] 杨华勇,龚国芳. 盾构掘进机及其液压技术的应用[J]. 液压气动与密封,2004(1):27-29. YANG Huayong,GONG Guofang. Shield TBM and its applications of hydraulic technology[J]. Hydraulics Pneumatics and Seals,2004(1):27-29. [11] 伍小杰,程尧,崔建民,等. 液压支架电液控制系统设计[J]. 煤炭科学技术,2011,39(4):106-109. WU Xiaojie,CHENG Yao,CUI Jianmin,et al. Design on electric and hydraulic control system for hydraulic powered support[J]. Coal Science and Technology,2011,39(4):106-109. [12] 杨华勇. 智能制造与智能液压件的一些探索[J]. 液压与气动,2020(1):1-9. YANG Huayong. Review of intelligent manufacturing and intelligent hydraulic components[J]. Chinese Hydraulics and Pneumatics,2020(1):1-9. [13] 杨华勇. 工程机械智能化进展与发展趋势[J]. 建设机械技术与管理,2017,30(12):19-21. YANG Huayong. Progress and trend of construction machinery intelligence[J]. Construction Machinery Technology and Management,2017,30(12):19-21. [14] XU B,SHEN J,LIU S,et al. Research and development of electro-hydraulic control valves oriented to industry 4.0:A review[J]. Chinese Journal of Mechanical Engineering,2020,33(1):29. [15] JANKOVIČ D, ŠIMIC M, HERAKOVIČ N. The concept of smart hydraulic press[J]. Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future,2021, 952: 409-420. [16] FANG X,WU C,ZHAO Y,et al. A 350 C piezoresistive n-type 4H-SiC pressure sensor for hydraulic and pneumatic pressure tests[J]. J. Micromech. Microeng., 2020,30(5):055009. [17] HUANG W, ZHANG Z, HE J, et al. Nonlinear hydraulic pressure response of an improved fiber tip interferometric high-pressure sensor[J]. Sensors,2020,20(9):2548. [18] YANG X,LIU M,SONG H,et al. Vibration resistance FBG temperature sensor fabrication and its application in the motor for hydraulic pump[J]. Measurement,2022,205:112141. [19] LIU Z,TIAN B,FAN X,et al. A temperature sensor based on flexible substrate with ultra-high sensitivity for low temperature measurement[J]. Sensors and Actuators A:Physical,2020,315:112341. [20] NA Z,QIJING L,LIANGQUAN Z,et al. Temperature and pressure dual-parameter sensing based on Fiber Bragg Grating[C]//Proceedings of the 16th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Xiamen,China,2021:1635. [21] LEUTENEGGER P,AMANN M,BERTSCH A,et al. LiView®:A disruptive sensor technology for intelligent hydraulic components[C]//The 11th IFK International Fluid Power Conference,IFK 2018,2018:141-153. [22] SHANBHAG V V,MEYER T J J,CASPERS L W,et al. Failure monitoring and predictive maintenance of hydraulic cylinder-state-of-the-art review[J]. IEEE/ASME Transactions on Mechatronics,2021,26(6):3087-3103. [23] LIU M,WU Y,SONG H,et al. Multiparameter measuring system using fiber optic sensors for hydraulic temperature,pressure and flow monitoring[J]. Measurement,2022,190:110705. [24] RAHMAN M F,CHEUNG N C,Khiang Wee Lim. Position estimation in solenoid actuators[J]. IEEE Transactions on Industry Applications,1996,32(3):552-559. [25] NAGAI S, NOZAKI T, KAWAMURA A. Environmental robust position control for compact solenoid actuators by sensorless simultaneous estimation of position and force[J]. IEEE Transactions on Industrial Electronics, 2016, 63(8):5078-5086. [26] TIAN Hao,ZHAO Yuren. Coil inductance model based solenoid on-off valve spool displacement sensing via laser calibration[J]. International Journal of Fluid Power,2015,16(3):133-140. [27] MERRITT H E,POMPER V. Hydraulic control systems[M]. New York:Wiley,2019. [28] WU D,BURTON R,SCHOENAU G. An empirical discharge coefficient model for orifice flow[J]. International Journal of Fluid Power,2002,3(3):13-19. [29] WU D,BURTON R,SCHOENAU G,et al. Modelling of orifice flow rate at very small openings[J]. International Journal of Fluid Power,2003,4(1):31-39. [30] DOBCHUK J,BURTON R,NIKIFORUK P. A modified turbulent orifice equation approach for modelling valves of unknown configuration[J]. International Journal of Fluid Power,2007,8(3):25-30. [31] WU C, LI S, LI Q, et al. Optimization of nonlinear pressure-flow characteristics of a spring-loaded pressure relief valve based on computational fluid dynamics simulation[J]. Journal of Pressure Vessel Technology,2021,143(6):061401. [32] ÅMAN R,HANDROOS H,ESKOLA T. Computationally efficient two-regime flow orifice model for real-time simulation[J]. Simulation Modelling Practice and Theory,2008,16(8):945-961. [33] ZHANG J, WANG D, XU B, et al. Flow control of a proportional directional valve without the flow meter[J]. Flow Measurement and Instrumentation, 2019, 67: 131-141. [34] Fluid Technology 4.0- The valve as a soft sensor - RWTH AACHEN UNIVERSITY IFAS - English[EB/OL]. [2022-07-18]. https://www.ifas.rwth-aachen.de/cms/IFAS/Forschung/Hochleistungskomponenten/~touqr/Fluidtechnik-4-0-Das-Ventil-als-Softse/lidx/1/. [35] WU S, BURTON R, JIAO Z, et al. Feasibility study on the use of a voice coil motor direct drive flow rate control valve[C]//ASME 2009 Dynamic Systems and Control Conference, Volume 1. Hollywood, California, USA: ASMEDC, 2009: 621-628. [36] KIM T,IVANTYSYNOVA M. Active vibration/noise control of axial piston machine using swash plate control[C]//ASME/BATH 2017 Symposium on Fluid Power and Motion Control. Sarasota,Forida,USA:American Society of Mechanical Engineers,2017:V001T01A053. [37] XU H,ZHANG J,SUN G,et al. The direct measurement of the cylinder block dynamic characteristics based on a non-contact method in an axial piston pump[J]. Measurement,2021,167:108279. [38] VIRVALO T,LAMMILA M,LEHTO E. CAN bus applied on hydraulic computed force control[J]. Transactions of the Institute of Measurement and Control,2004,26(5):373-391. [39] BIAN Yongming,XU Xinming,ZHU Lijing. Variable frequency hydraulic speed control system based on CANopen[C]//20102nd International Conference on Education Technology and Computer. Shanghai,China:IEEE,2010:V3-264-V3-268. [40] Danfoss. Valves and actuators|Danfoss[EB/OL]. [2023-09-10]. https://www.danfoss.com/en/products/dps/valves-and-actuators/#tab-valves. [41] EtherCAT Technology Group. First EtherCAT application in Schuler Profiline presses[EB/OL]. [2023-09-10]. https://www.ethercat.org/en/downloads/downloads_BFA5E7D69A604672A229A63DFB158B09.html. [42] Parker. Direct operated proportional directional control valve-series D1FC /D3FC|Parker NA[EB/OL]. [2023-07-01]. https://ph.parker.com/us/en/product-list/direct-operated-proportional-dc-valve-series-d1fc-d3fc. [43] Atos Group. Servoproportional directionals|Atos industrial hydraulics[EB/OL]. [2023-07-01]. https://www.atos.com/en-it/Products/Industrial/Proportional-valves/Servoproportional-directionals/c/1_IN_C001. [44] MOOG. INC M. Direct-operated servo valves with fieldbus interface D636 and D637 series[EB/OL]. [2023-07-01]. https://www.moog.com/products/servovalves-servo-proportional-valves/industrial/flow-control/fieldbus-interface/direct-operated-servo-valves-with-fieldbus-interface-d636-d637-series.html. [45] Rexroth. CytroPa.,The compact revolution for hydraulic power units[EB/OL]. [2023-07-01]. https://www.boschrexroth.com/en/us/connected-hydraulics/products/cytropac/. [46] 工业和信息化部信息通信管理局. “5G+工业互联网”十个典型应用场景和五个重点行业实践情况[EB/OL]. [2023-09-10]. https://www.miit.gov.cn/ztzl/rdzt/gyhlw/gzdt/art/2021/art_689c758fc77045eeb32a5932d3ea4f22.html. Information and Communication Administration of the Ministry of Industry and Information Technology of the People’s Republic of China. Ten typical application scenarios and five key industry practices of “5G+Industrial Internet”[EB/OL]. [2023-09-10]. https://www.miit.gov.cn/ztzl/rdzt/gyhlw/gzdt/art/2021/art_689c758fc77045eeb32a5932d3ea4f22.html. [47] 中国信息通信研究院. 中国“5G+工业互联网”发展报告[EB/OL]. [2023-09-10]. http://www.caict.ac.cn/kxyj/qwfb/bps/202112/t20211227_394647.htm. China Academy of Information and Communications Technology. China’s “5G+Industrial Internet” development report[EB/OL]. [2023-09-10]. http://www.caict.ac.cn/kxyj/qwfb/bps/202112/t20211227_394647.htm. [48] OPC Foundation. Mining-loading equipment-hydraulic excavator[EB/OL]. [2023-07-02]. https://opcfoundation.org/developer-tools/documents/view/253. [49] REETHOF G M,BLACKBURN J F,SHEARER J L. Fluid power control[M]. Cambridge:M.I.T. Press,1960. [50] YAO B,BU F,REEDY J,et al. Adaptive robust motion control of single-rod hydraulic actuators:Theory and experiments[J]. IEEE/ASME Transactions on Mechatronics,2000,5(1):79-91. [51] PORTER B,TATNALL M L. Performance characteristics of an adaptive hydraulic servo-mechanism[J]. International Journal of Control,1970,11(5):741-757. [52] PLUMMER A R,VAUGHAN N D. Robust adaptive control for hydraulic servosystems[J]. Journal of Dynamic Systems,Measurement,and Control,1996,118(2):237-244. [53] YAO B,TOMIZUKA M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form[J]. Automatica,1997,33(5):893-900. [54] YAO B. High performance adaptive robust control of nonlinear systems:A general framework and new schemes[C]//Proceedings of the 36th IEEE Conference on Decision and Control:IEEE,1997:2489-2494. [55] YAO B,CHIU G,REEDY J. Nonlinear adaptive robust control of one-DOF electro-hydraulic servo systems[C]//ASME International Mechanical Engineering Congress and Exposition(IMECE’97),FPST. Los Alamitos,CA:IEEE Comp. Soc.,1997,4:191-197. [56] YAO B,BU F,CHIU G T C. Nonlinear adaptive robust control of electro-hydraulic servo systems with discontinuous projections[C]//Proceedings of the 37th IEEE Conference on Decision and Control:IEEE,1998:2265-2270. [57] YAO J,JIAO Z,MA D,et al. High-Accuracy tracking control of hydraulic rotary actuators with modeling uncertainties[J]. IEEE/ASME Transactions on Mechatronics,2014,19(2):633-641. [58] 徐兆红,迟毅林. 电液位置伺服系统的模糊控制研究[D]. 昆明:昆明理工大学,2005. XU Zhaohong,CHI Yilin. Research on fuzzy control of electro-hydraulic position servo system[D]. Kunming:Kunming University of Sciencce and Technology,2005. [59] 潘洪亮,姚建均. 专家PID控制器在电液伺服系统中的应用研究[J]. 自动化技术与应用,2008(11):29-32. PAN Hongliang,YAO Jianjun. An expert-PID controller of the electro-hydraulic servo system[J]. Techniques of Automation and Applications,2008(11):29-32. [60] HUANG Y,GUO C,SUN J,et al. Cloud model based intelligent control for marine hydraulic steering gear system[J]. CIAC,2017:631-638. [61] KONG X,MAJUMDAR H,ZANG F,et al. A multi-switching mode intelligent hybrid control of electro-hydraulic proportional systems[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2019,233(1): 120-131. [62] 刘乐,蔺明浩,李晓刚,等. 基于模糊干扰观测器的电液伺服位置系统自适应反步控制[J]. 电机与控制学报, 2019(23):143-150,158. LIU Le,LIN Minghao,LI Xiaogang,et al. Adaptive backstepping control for the electro-hydraulic srevo position system based on fuzzy disturbance observers[J]. Electric Machines and Control,2019(23):143-150,158. [63] BESSA W M,DUTRA M S,KREUZER E. Sliding mode control with adaptive fuzzy dead-zone compensation of an electro-hydraulic servo-system[J]. Journal of Intelligent and Robotic Systems,2010,58(1):3-16. [64] 董增寿. 基于神经网络PID控制的电液位置伺服系统[J]. 太原重型机械学院学报,2004(3):213-215. DONG Zengshou. Application of neural network control of self-adjusted PID parameters for electro-hydraulic position servo system[J]. Journal of Taiyuan Heavy Machinery Institute,2004(3):213-215. [65] ALY A A. PID parameters optimization using genetic algorithm technique for electrohydraulic servo control system[J]. Intelligent Control and Automation,2011,2(2):69. [66] SHERN C M,GHAZALI R,HORNG C S,et al. Optimization techniques in PID controller on a nonlinear electro-hydraulic actuator system[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences,2019,56(2):296-303. [67] 何玉彬,刘艳秋,徐立勤,等. 电液伺服系统的神经网络在线自学习自适应控制[J]. 中国电机工程学报,1998(6):59-62. HE Yubin,LIU Yanqiu,XU Liqin,et al. Neural network based on-line self-learning adaptive control for electro-hydraulic servo system[J]. Proceedings of the CSEE,1998(6):59-62. [68] YAO Z,YAO J,SUN W. Adaptive RISE control of hydraulic systems with multilayer neural-networks[J]. IEEE Transactions on Industrial Electronics,2019,66(11):8638-8647. [69] RUAN W,DONG Q,ZHANG X,et al. Friction compensation control of electromechanical actuator based on neural network adaptive sliding mode[J]. Sensors,2021,21(4):1508. [70] GUO Q,CHEN Z. Neural adaptive control of single-rod electrohydraulic system with lumped uncertainty[J]. Mechanical Systems and Signal Processing,2021,146:106869. [71] WANG B,ZHANG N,JI H. Study on precise displacement control of a miniature hydraulic system via RBF-DOB[J]. IEEE Access,2018,6:69162-69171. [72] CHENG Y,XU B,LIAN Z,et al. Adaptive learning control of switched strict-feedback nonlinear systems with dead zone using NN and DOB[J]. IEEE Transactions on Neural Networks and Learning Systems,2023,34(5):2503-2512. [73] NGUYEN M H,DAO H V,AHN K K. Adaptive robust position control of electro-hydraulic servo systems with large uncertainties and disturbances[J]. Applied Sciences,2022,12(2):794. [74] 何洪,孙薇,周恩涛,等. 电液速度伺服系统的CMAC-1积分控制[J]. 机床与液压,1999(1):12-13 HE Hong,SUN Wei,ZHOU Entao,et al. CMAC-1 integral control for electrohydraulic velocity servo systems[J]. Machine Tool and Hydraulics,1999(1):12-13. [75] 蒋志明. 基于小脑模型的电液位置伺服系统在线学习控制研究[J]. 西安交通大学学报,2000(1):58-61. JIANG Zhiming. On line learning control for electrohydraulic position servo systems based on CMAC neural network[J]. Journal of Xi’an Jiaotong University,2000(1):58-61. [76] MEHRABIAN A R,LUCAS C,ROSHANIAN J. Aerospace launch vehicle control:An intelligent adaptive approach[J]. Aerospace Science and Technology,2006,10(2):149-155. [77] SADEGHIEH A,ROSHANIAN J,NAJAFI F. Implementation of an intelligent adaptive controller for an electrohydraulic servo system based on a brain mechanism of emotional learning[J]. International Journal of Advanced Robotic Systems,2012,9(3):84. [78] 曹玥,杨国亮. 基于大脑情感学习的液压伺服控制系统研究[D]. 赣州:江西理工大学,2011. CAO Yue,YANG Guoliang. Research on hydraulic servo control system based on brain emotion learning[D]. Ganzhou:Jiangxi University of Science and Technology,2011. [79] SANAI DASHTI Z,GHOLAMI M,HAJIMANI M. Brain emotional learning based intelligent controller for velocity control of an electro hydraulic servo system[J]. Journal of Electrical and Electronics Engineering,2017,12(4):29-35. [80] JAFARI M,XU H. A biologically-inspired intelligent controller for distributed velocity control of multiple electro-hydraulic servo-systems[C]//2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,2017:1-7. [81] SUTTON R S,BARTO A G. Reinforcement learning:An introduction[M]. 2nd ed. Cambridge:MIT Press,2018. [82] WYRWAŁ D,LINDNER T,NOWAK P,et al. Control strategy of hydraulic cylinder based on deep reinforcement learning[C]//2020 International Conference Mechatronic Systems and Materials (MSM). 2020:1-5. [83] YUAN X,WANG Y,ZHANG R,et al. Reinforcement learning control of hydraulic servo system based on TD3 algorithm[J]. Machines,2022,10(12):1244. [84] EGLI P,HUTTER M. A general approach for the automation of hydraulic excavator arms using reinforcement learning[J]. IEEE Robotics and Automation Letters,2022,7(2):5679-5686. [85] 马航,杨俊友,袁琳. 迭代学习控制研究现状与趋势[J]. 控制工程,2009,16(3):286-290. MA Hang,YANG Junyou,YUAN Lin. Current state and trend of iterative learning control[J]. Control Engineering of China,2009,16(3):286-290. [86] 曹树平,熊昌仑,邹占江,等. 电液位置伺服系统的迭代学习控制[J]. 机械科学与技术,1998(3):107-108. CAO Shuping,XIONG Changlun,ZOU Zhanjiang,et al. Iterative learning control of electrohydraulic position servo systems[J]. Mechanical Science and Technology for Aerospace Engineering,1998(3):107-108. [87] 宋君君,于少娟. 迭代自适应控制的研究及其在电液伺服系统上的应用[D]. 太原:太原科技大学,2012. SONG Junjun,YU Shaojuan. Study of iterative adaptive control and its application to electro-hydraulic servo systems[D]. Taiyuan:Taiyuan University of Science and Technology,2012. [88] TROJAOLA I,ELORZA I,IRIGOYEN E,et al. Iterative learning control and Gaussian process regression for hydraulic cushion control[J]. IFAC-PapersOnLine,2020,53(2):1421-1426. [89] 张友旺,钟向明. 电液位置伺服系统的自适应模糊神经网络控制[J]. 中国机械工程,2004(8):25-28,93. ZHNAG Youwang,ZHONG Xiangming. Adaptive fuzzy neural network control for electro-hydraulic position servo system[J]. China Mechanical Engineering,2004(8):25-28,93. [90] 于少娟,熊诗波. 电液伺服力控系统的鲁棒迭代学习控制方法研究[D]. 太原:太原科技大学,2012. YU Shaojuan,XIONG Shibo. Study on robust iterative learning control for the electro-hydraulic force servo system[D]. Taiyuan:Taiyuan University of Science and Technology,2012. [91] 林良. 负载口独立控制技术的发展优势与困境[J]. 科技创新与生产力,2017,2:77-78. LIN Liang. Development advantages and difficulties of independent metering control technology[J]. Sci-tech Innovation and Productivity,2017,2:77-78. [92] ERIKSSON B,PALMBERG J O. Individual metering fluid power systems:Challenges and opportunities[J]. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems & Control Engineering,2011,225(2):196-211. [93] BJORN E. Mobile fluid powersystems design:With a fo- cus on energy efficiency[D]. Linkoping:Linkoping University,2010. [94] 徐兵,曾定荣,葛耀峥,等. 负载口独立控制负载敏感系统模式切换特性[J]. 浙江大学学报,2011,45(5): 858-863. XU Bing,ZENG Dingrong,GE Yaozheng,et al. Research on characteristic of mode switch of separate meter in and meter out load sensing control system[J]. Journal of Zhejiang University,2011,45(5):858-863. [95] 丁孺琦,江来,李刚,等. 电液负载敏感负载口独立多模式切换控制能效研究[J]. 农业机械学报,2021,52(12):433-442. DING Ruqi,JIANG Lai,LI Gang,et al. Energy efficiency of electro-hydraulic load sensing independent metering multi-mode switching control system[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(12):433-442. [96] 牛善帅,王军政,张鹏,等. 基于负载口独立控制的双伺服阀控缸系统[J]. 北京理工大学学报,2019,39(12):1292-1297. NIU Shanshuai,WANG Junzheng,ZHANG Peng,et al. Separate meter in and meter out valve controlled cylinder system based on dual servo control[J]. Transactions of Beijing Institute of Technology,2019,39(12):1292-1297. [97] Ultronics ZTS16 twin spool valve sense CAN Bus [EB/OL]. [2023-09-15]. https://en.alfa-hydraulics.com/files/download/Vickers/Vickers%20Mobile%20Valve/8_ZTS16.pdf. [98] LINJAMA M,VILENIUS M. Digital hydraulics-towards perfect valve technology[M]. Tampere:Tampere University of Technology,1998. [99] VILENIUS M,LAAMANEN A,LINJAMA M. Is it time for digital hydraulics?[C]//The Eighth Scandinavian International Conference on Fluid Power,SICFP’03,. Tampere,Finland,2003:21. [100] LINJAMA M. Digital fluid power-state of the art[C]//The Twelfth Scandinavian International Conference on Fluid Power,Tampere,Finland,2011:1-24. [101] LANTELA T,PIETOLA M. High-flow rate miniature digital valve system[J]. International Journal of Fluid Power,2017,18(3):188-195. [102] KETONEN M,LINJAMA M. Digital hydraulic imv system in an excavator-first results[C]//The Sixteenth Scandinavian International Conference on Fluid Power. Tampere,Finland,2019:15. [103] LINJAMA M,VILENIUS M. Energy-efficient motion control of a digital hydraulic joint actuator[J]. Proceedings of the JFPS International Symposium on Fluid Power,2005,2005(6):640-645. [104] 张斌,钟麒,马吉恩,等. 一种负载口独立控制的组合式数字阀及其方法:中国,CN105546162A[P]. 2016-05-04. ZHANG Bin,ZHONG Qi,MA Jien,et al. A combined digital valve with independent control of load port and its method:China,CN105546162A[P]. 2016-05-04. [105] 钟麒. 面向负载口独立控制的可编程阀关键技术研究[D]. 杭州:浙江大学,2019. ZHONG Qi. Research on key technologies of programmable valve for independent metering control[D]. Hangzhou:Zhejaing University,2019. [106] WU S,ZHAO X,LI C,et al. Multiobjective optimization of a hollow plunger type solenoid for high speed on/off valve[J]. IEEE Transactions on Industrial Electronics,2018,65(4):3115-3124. [107] SHANG Y,LI R,WU S,et al. A research of high-precision pressure regulation algorithm based on ON/OFF valves for aircraft braking system[J]. IEEE Transactions on Industrial Electronics,2022,69(8):7797-7806. [108] VAZQUEZ M E,CHACON M O L,ALTUVE F H J. An on-line expert system for fault section diagnosis in power systems[J]. IEEE Transactions on Power Systems,1997,12(1):357-362. [109] BIAGETTI T. Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems[J]. Energy,2004,29(12-15):2553-2572. [110] GARGA A K,MCCLINTIC K T,CAMPBELL R L,et al. Hybrid reasoning for prognostic learning in CBM systems[C]//2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542):Vol. 6. Big Sky,MT,USA:IEEE,2001:2957-2969. [111] 曾庆虎. 机械动力传动系统关键部件故障预测技术研究[D]. 长沙:国防科学技术大学,2010. ZENG Qinghu. Fault prognostics technologies research for key components of mechanical power and transmission systems[D]. Changsha:National University of Defense Technology,2010. [112] 曹立军,秦俊奇,武彩岗,等. 一种基于动态模糊综合评判的故障预测新方法[J]. 模糊系统与数学,2005(3):151-156. CAO Lijun,QIN Junqi,WU Caigang,et al. A new fault forecast algorithm based on dynamic fuzzy comprehensive evaluation method[J]. Fuzzy Systems and Mathematics,2005(3):151-156. [113] 秦俊奇,王兴贵,曹立军. 自行火炮故障预测的新方法[J]. 火炮发射与控制学报,2004(1):37-40. QIN Junqi,WANG Xinggui,CAO Lijun. A new method of fault forecast for self-propelled gun[J]. Journal of Gun Launch and Control,2004(1):37-40. [114] 黄景德,王兴贵,王祖光. 故障仿真预测系统的知识处理[J]. 计算机仿真,2001(6):42-44. HUANG Jingde,WANG Xinggui,WANG Zuguang. Knowledge study of fault emulation and forecast system[J]. Computer Simulation,2001(6):42-44. [115] 周长春,庄景涵. 基于故障树分析的CESSNA172R飞机起落架故障诊断[J]. 中国民航飞行学院学报,2021,32(3):11-14. ZHOU Changchun,ZHUANG Jinghan. Fault diagnosis of CESSNA172R aircraft landing gear based on fault tree analysis[J]. Journal of Civil Aviation Flight University of China,2021,32(3):11-14. [116] 施洋,王晓. 基于故障树的防爆工程车故障诊断系统[J]. 机械管理开发,2022,37(5):132-135. SHI Yang,WANG Xiao. Fault diagnosis system for explosion-proof engineering vehicles based on fault tree[J]. Mechanical Management and Development,2022,37(5):132-135. [117] 王慧明,张严林,许茹悦. 基于故障树分析的直升机助力器卡滞故障诊断[J]. 新技术新工艺,2022(1):76-80. WANG Huiming,ZHANG Yanlin,XU Ruyue. fault diagnosis of helicopters booster binding based on fault tree analysis[J]. New Technology and New Process,2022(1):76-80. [118] 陆剑峰,徐煜昊,夏路遥,等. 数字孪生支持下的设备故障预测与健康管理方法综述[J]. 自动化仪表,2022,43(6):1-7,12. LU Jianfeng,XU Yuhao,XIA Luyao,et al. Review of digital twin-enabled device prognostics and health management approaches[J]. Process Automation Instrumentation,2022,43(6):1-7,12. [119] 陈兴玉,张红旗,黄魁,等. 面向预测性维修的工程装备故障预测方法研究综述[J]. 智能制造,2022(2):50-55. CHEN Xingyu,ZHANG Hongqi,HUANG Kui,et al. A review of research on failure prediction methods of engineering equipment for predictive maintenance[J]. Intelligent Manufacturing,2022(2):50-55. [120] RAY A,TANGIRALA S. Stochastic modeling of fatigue crack dynamics for on-line damage estimation and life prediction[J]. IFAC Proceedings Volumes,1996,29(1):6608-6613. [121] SUTHARSSAN T,MONTALVAO D,CHEN Y K,et al. A review on prognostics and health monitoring of proton exchange membrane fuel cell[J]. Renewable and Sustainable Energy Reviews,2017,75:440-450. [122] LEI Y,LI N,GUO L,et al. Machinery health prognostics:A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing,2018,104:799-834. [123] CHELIDZE D. Multimode damage tracking and failure prognosis in electromechanical systems[C]//WILLETT P K,KIRUBARAJAN T. AeroSense 2002. Orlando,FL,2002:1-12. [124] BOX G E P,JENKINS G M. Time series analysis forecasting and control[J]. Journal of Time Series Analysis,1970,3:3228. [125] ZHANG S,GANESAN R. Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery[J]. Journal of Engineering for Gas Turbines and Power,1997,119(2):378-384. [126] YAM R C M,TSE P W,LI L,et al. Intelligent predictive decision support system for condition-based maintenance[J]. The International Journal of Advanced Manufacturing Technology,2001,17(5):383-391. [127] TSE P W,ATHERTON D P. Prediction of machine deterioration using vibration based fault trends and recurrent neural networks[J]. Journal of Vibration and Acoustics,1999,121(3):355-362. [128] WANG P,VACHTSEVANOS G. Fault prognostics using dynamic wavelet neural networks[J]. Artificial Intelligence for Engineering Design,Analysis and Manufacturing,2001,15(4):349-365. [129] DAI J,TANG J,HUANG S,et al. Signal-based intelligent hydraulic fault diagnosis methods:Review and prospects[J]. Chinese Journal of Mechanical Engineering,2019,32(1):75. [130] WANG W Q,GOLNARAGHI M F,ISMAIL F. Prognosis of machine health condition using neuro-fuzzy systems[J]. Mechanical Systems and Signal Processing,2004,18(4):813-831. [131] 孙德山. 支持向量机分类与回归方法研究[D]. 长沙: 中南大学,2004. SUN Deshan. The researches on support vector machine classification and regression methods[D]. Changsha:Central South University,2004. [132] 王文智. 以可靠性为中心的维修分析在装备寿命周期内的应用[J]. 航空维修与工程,2021(12):23-27. WANG Wenzhi. Application of reliability centered maintenance analysis in equipment life cycle[J]. Aviation Maintenance and Engineering,2021(12):23-27. [133] 戎翔,左洪福. 航空发动机视情维修理论与技术综述[C]//第四届长三角科技论坛航空航天与长三角经济发展分论坛暨第三届全国航空维修技术学术年会,2007:7-15. RONG Xiang,ZUO Hongfu. Overview of theory and technology for condition based maintenance of aircraft engines[C]//The 4th Yangtze River Delta Science and Technology Forum Aerospace and Yangtze River Delta Economic Development Sub Forum and the 3rd National Aviation Maintenance Technology Academic Annual Conference,2007:7-15. [134] LEO E,ENGELL S. Condition-based maintenance optimization via stochastic programming with endogenous uncertainty[J]. Computers & Chemical Engineering,2022,156:107550. [135] JARDINE A K S,LIN D,BANJEVIC D. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical Systems and Signal Processing,2006,20(7):1483-1510. |
[1] | 魏荣, 徐默然, 李常平, 李树健, 李鹏南. 电火花辅助铣削钛合金多能场建模及调控优化研究[J]. 机械工程学报, 2024, 60(9): 393-409. |
[2] | 吴春亚, 孙瑞江, 侯博, 李曦光, 吴佳昊, 刘畅, 陈明君. 响应型固体功能表面的浸润性可逆调控研究进展[J]. 机械工程学报, 2024, 60(7): 144-173. |
[3] | 张超, 周光辉, 李晶晶, 魏智博, 秦天宇. 面向航空复杂零件智能工艺规划的孪生工艺模型构建与应用研究[J]. 机械工程学报, 2024, 60(6): 32-43. |
[4] | 任杉, 王晋, 赵欣, 张映锋. 复杂产品智能设计与主动运维“双馈式”制造服务方法体系[J]. 机械工程学报, 2024, 60(6): 127-136. |
[5] | 陈祉旭, 李晨星, 杨春利. 面向叶片损伤修复的机器人电弧熔丝沉积工艺研究[J]. 机械工程学报, 2024, 60(6): 187-196. |
[6] | 刘常海, 赵志学, 胡敏, 燕浩, 杨庆俊, 包钢, 曾亿山. 基于负载口独立的液压式波浪能转换器捕获性能研究[J]. 机械工程学报, 2024, 60(6): 386-397. |
[7] | 张军辉, 刘施镐, 徐兵, 黄伟迪, 吕飞, 黄晓琛. 轴向柱塞泵智能化关键技术研究进展及发展趋势[J]. 机械工程学报, 2024, 60(4): 32-49. |
[8] | 田边, 刘江江, 张仲恺, 刘兆钧, 马荣, 林启敬, 蒋庄德. 基于多节点阵列结构的高精度薄膜温度传感器研究[J]. 机械工程学报, 2024, 60(4): 92-100. |
[9] | 王波, 赵星宇, 权龙, 赵斌, 李运帷, 郝云晓. 基于主动压差调控的变增益流量控制原理[J]. 机械工程学报, 2024, 60(4): 134-142. |
[10] | 冯青松, 杨舟, 郭文杰. 基于振幅放大机制的周期钢弹簧浮置板轨道结构低频振动控制[J]. 机械工程学报, 2024, 60(3): 155-169. |
[11] | 张进杰, 王怀磊, 窦全礼, 王子嘉, 茆志伟. 船用柴油机轴系不对中在线检测与自愈调控方法[J]. 机械工程学报, 2024, 60(20): 24-34. |
[12] | 马勇, 胡祖硕, 王雯琦, 常兴山, 严新平. 船用智能设备与系统的发展现状与展望[J]. 机械工程学报, 2024, 60(20): 181-192. |
[13] | 刘常海, 费俊凯, 赵志学, 吴俊国, 胡敏, 高文智, 曾亿山. 基于容积调节与蓄能稳压的波浪能转换液压提能系统特性仿真研究[J]. 机械工程学报, 2024, 60(20): 327-338. |
[14] | 周熙杰, 谢合瑞, 徐静吉, 崔健磊, 梅雪松. 飞秒激光加工液体火箭发动机喷注部件无锥度微孔试验研究[J]. 机械工程学报, 2024, 60(17): 357-366. |
[15] | 李鹤, 赵学森, 张俊杰, 马文启, 胡振江, 孙涛. 复杂曲面微织构五轴联动激光微铣削精密加工技术研究[J]. 机械工程学报, 2024, 60(15): 368-378. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||