机械工程学报 ›› 2024, Vol. 60 ›› Issue (7): 144-173.doi: 10.3901/JME.2024.07.144
吴春亚1,2, 孙瑞江2, 侯博2, 李曦光2, 吴佳昊2, 刘畅2, 陈明君1,2
收稿日期:
2023-04-18
修回日期:
2023-08-25
出版日期:
2024-04-05
发布日期:
2024-06-07
通讯作者:
吴春亚,女,1982年出生,博士,教授,博士研究生导师,国家级高层次青年人才。主要研究方向为微纳米制造技术、生物材料界面特性与功能性评价。E-mail:wuchunya1982@163.com
作者简介:
孙瑞江,男,1998年出生,博士研究生。主要研究方向为固体表面浸润性可逆调控方法技术研究。E-mail:srjedu2019@163.com;陈明君,男,1971年出生,博士,教授,博士研究生导师,国家级高层次人才。主要研究方向为超精密加工及微纳米制造技术。E-mail:chenmj@hit.edu.cn
基金资助:
WU Chunya1,2, SUN Ruijiang2, HOU Bo2, LI Xiguang2, WU Jiahao2, LIU Chang2, CHEN Mingjun1,2
Received:
2023-04-18
Revised:
2023-08-25
Online:
2024-04-05
Published:
2024-06-07
摘要: 浸润性可逆调控响应型表面是一种通过外部刺激响应材料或形貌可控微观结构实现静态/动态浸润性可逆转换的固体表面,可有效解决传统特殊浸润表面性能单一、结构固定等问题,更符合基础研究和工程现场的多样化、时变性应用需求。着眼于表面浸润性能主观调控中关键技术的发展态势,综述分析了响应型固体表面的类型特征、制备方法和应用前景。根据外部刺激类型,将响应型功能表面归纳为基于化学组成和基于微观结构两大类,重点围绕光响应型、温度响应型、pH响应型和磁场响应型等功能表面的响应材料、响应原理、调控机制及性能特点展开系统分析,聚焦于两类响应功能表面制备方法,梳理其基本原理、技术特色及其优劣性,并深入探讨了两类表面在可控油水分离、微液滴/流体操控等领域的潜在应用价值。最后指出了浸润性可逆调控表面在发展过程中需要面临的挑战和仍需注重解决的问题,希望能为后续人工响应型功能表面研究工作的大规模推进提供参考。
中图分类号:
吴春亚, 孙瑞江, 侯博, 李曦光, 吴佳昊, 刘畅, 陈明君. 响应型固体功能表面的浸润性可逆调控研究进展[J]. 机械工程学报, 2024, 60(7): 144-173.
WU Chunya, SUN Ruijiang, HOU Bo, LI Xiguang, WU Jiahao, LIU Chang, CHEN Mingjun. New Progress of Responsive Solid Surfaces with Reversibly Switchable Wettability[J]. Journal of Mechanical Engineering, 2024, 60(7): 144-173.
[1] XIN B W,HAO J C. Reversibly switchable wettability[J]. Chemical Society Reviews,2010,39(2):769-782. [2] LIU K S,YAO X,JIANG L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews,2010,39(8):3240-3255. [3] ZHU H,GUO Z G. Understanding the separations of oil/water mixtures from immiscible to emulsions on super-wettable surfaces[J]. Journal of Bionic Engineering,2016,13(1):1-29. [4] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London,1805,95:65-87. [5] KIM W,EUN J,JEON S. Anti-splashing properties of sticky superhydrophobic surfaces[J]. Applied Surface Science,2021,542:148617. [6] SHI Z,ZHANG Z J,HUANG W,et al. Spontaneous adsorption-induced salvinia-like micropillars with high adhesion[J]. Langmuir,2021,37(22):6728-6735. [7] MARMUR A. Hydro- hygro- oleo- omni-phobic? Terminology of wettability classification[J]. Soft Matter,2012,8(26):6867-6870. [8] WANG S T,LIU K S,YAO X,et al. Bioinspired surfaces with superwettability:New insight on theory,design,and applications[J]. Chemical Reviews,2015,115(16):8230-8293. [9] SAHOO B N,NANDA S,KOZINSKI J A,et al. PDMS/Camphor soot composite coating:Towards a self-healing and a self-cleaning superhydrophobic surface[J]. RSC Advances,2017,7(25):15027-15040. [10] CAI M,YAN H,SONG S J,et al. State-of-the-art progresses for Ti3C2Tx MXene reinforced polymer composites in corrosion and tribology aspects[J]. Advances in Colloid and Interface Science,2022,309:102790. [11] FAN Y H,LI C Z,CHEN Z J,et al. Study on fabrication of the superhydrophobic sol-gel films based on copper wafer and its anti-corrosive properties[J]. Applied Surface Science,2012,258(17):6531-6536. [12] FENG L B,YAN Z N,SHI X T,et al. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys[J]. Applied Physics A-Materials Science & Processing,2018,124(2):142. [13] TAGHVAEI E,MOOSAVI A,NOURI-BORUJERDI A,et al. Superhydrophobic surfaces with a dual-layer micro- and nanoparticle coating for drag reduction[J]. Energy,2017,125:1-10. [14] CAO Y Z,ZHANG X Y,TAO L,et al. Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation[J]. ACS Applied Materials & Interfaces,2013,5(10):4438-4442. [15] XU L P,ZHAO J,SU B,et al. An ion-induced low-oil-adhesion organic/inorganic hybrid film for stable superoleophobicity in seawater[J]. Advanced Materials,2013,25(4):606-611. [16] 李璞君. 特殊浸润性表面对液滴定向输运的影响[D]. 哈尔滨:哈尔滨工业大学,2018. LI Pujun. Effect of special wettability surfaces on droplet directional transport[D]. Harbin:Harbin Institute of Technology,2018. [17] KIM Y,EBARA M,AOYAGI T. A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis[J]. Advanced Functional Materials,2013,23(46):5753-5761. [18] HUANG Y,STOGIN B B,SUN N,et al. A switchable cross-species liquid repellent surface[J]. Advanced Materials,2017,29(8):1604641. [19] WANG Z W,YUAN L F,WANG L,et al. Stretchable superlyophobic surfaces for nearly-lossless droplet transfer[J]. Sensors and Actuators B-Chemical,2017,244:649-654. [20] WU D,WU S Z,CHEN Q D,et al. Curvature-driven reversible in situ switching between pinned and roll-down superhydrophobic states for water droplet transportation[J]. Advanced Materials,2011,23(4):545-549. [21] LI J J,ZHOU Y N,LUO Z H. Polymeric materials with switchable superwettability for controllable oil/water separation:A comprehensive review[J]. Progress in Polymer Science,2018,87:1-33. [22] DANG Z,LIU L B,LI Y,et al. In situ and ex situ pH-responsive coatings with switchable wettability for controllable oil/water separation[J]. ACS Applied Materials & Interfaces,2016,8(45):31281-31288. [23] LI Q,LI L J,SHI K,et al. Reversible structure engineering of bioinspired anisotropic surface for droplet recognition and transportation[J]. Advanced Science,2020,7(18):2001650. [24] ZHANG Q,MENG P,WU Y L,et al. Reversible strategy of water monitoring aimed at amphiphilic pollutants[J]. ACS Applied Materials & Interfaces,2018,10(3):3106-3111. [25] CAPUTO G,NOBILE C,KIPP T,et al. Reversible wettability changes in colloidal TiO2 nanorod thin-film coatings under selective UV laser irradiation[J]. Journal of Physical Chemistry C,2008,112(3):701-714. [26] GUO F,GUO Z G. Inspired smart materials with external stimuli responsive wettability:A review[J]. RSC Advances,2016,6(43):36623-36641. [27] UCHIDA K,IZUMI N,SUKATA S,et al. Photoinduced reversible formation of microfibrils on a photochromic diarylethene microcrystalline surface[J]. Angewandte Chemie-International Edition,2006,45(39):6470-6473. [28] JIANG W H,WANG G J,HE Y N,et al. Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer[J]. Chemical Communications,2005,28:3550-3552. [29] YONG J L,CHEN F,YANG Q,et al. Photoinduced switchable underwater superoleophobicity- superoleophilicity on laser modified titanium surfaces[J]. Journal of Materials Chemistry A,2015,3(20):10703-10709. [30] LI J J,ZHU L T,LUO Z H. Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation[J]. Chemical Engineering Journal,2016,287:474-481. [31] QU M N,MA L L,WANG J X,et al. Multifunctional superwettable material with smart pH responsiveness for efficient and controllable oil/water separation and emulsified wastewater purification[J]. ACS Applied Materials & Interfaces,2019,11(27):24668-24682. [32] SINGH V,HUANG C,SHENG Y,et al. Smart zwitterionic sulfobetaine silane surfaces with switchable wettability for aqueous/nonaqueous drops[J]. Journal of Materials Chemistry A,2018,6(5):2279-2288. [33] LEE S G,LEE D Y,LIM H S,et al. Switchable transparency and wetting of elastomeric smart windows[J]. Advanced Materials,2010,22(44):5013. [34] LI D K,HUANG J X,HAN G C,et al. A facile approach to achieve bioinspired PDMS@Fe3O4 fabric with switchable wettability for liquid transport and water collection[J]. Journal of Materials Chemistry A,2018,6(45):22741-22748. [35] ZHANG H Y,LIU Y Y,LAI H,et al. Smart gripper based on electric-triggered superhydrophobic polyurethane arrays coated bucky gel composite membrane for reversible capture/release of both solid and liquid[J]. Chemical Engineering Journal,2021,417:128072. [36] WANG S T,SONG Y L,JIANG L. Photoresponsive surfaces with controllable wettability[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews,2007,8(1):18-29. [37] BORRAS A,BARRANCO A,GONZALEZ-ELIPE A R. Reversible superhydrophobic to superhydrophilic conversion of Ag@TiO2 composite nanofiber surfaces[J]. Langmuir,2008,24(15):8021-8026. [38] LAI Y K,LIN C J,HUANG J Y,et al. Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films[J]. Langmuir,2008,24(8):3867-3873. [39] CALDONA E B,ALBAYALDE J M C,AGLOSOLOS A M P,et al. Titania-containing recycled polypropylene surfaces with photo-induced reversible switching wettability[J]. Journal of Polymers and the Environment,2019,27(7):1564-1571. [40] FENG X J,FENG L,JIN M H,et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J]. Journal of the American Chemical Society,2004,126(1):62-63. [41] LI J P,SUN Q F,HAN S J,et al. Reversibly light-switchable wettability between superhydrophobicity and superhydrophilicity of hybrid ZnO/bamboo surfaces via alternation of UV irradiation and dark storage[J]. Progress in Organic Coatings,2015,87:155-160. [42] LIN D D,WU H,PAN W. Photoswitches and memories assembled by electrospinning aluminum-doped zinc oxide single nanowires[J]. Advanced Materials,2007,19(22):3968-3972. [43] LIM H S,KWAK D,LEE D Y,et al. UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity[J]. Journal of the American Chemical Society,2007,129(14):4128-4129. [44] ZHANG C,PENG Z,CUID X,et al. Reversible superhydrophilicity and hydrophobicity switching of V2O5 thin films deposited by magnetron sputtering[J]. Applied Surface Science,2018,433:1094-1099. [45] WANG X M,WEI Z H,YU C Q,et al. Reversible wettability of tungsten trioxide films with novel dandelion-like structures[J]. Zeitschrift fur Anorganische und Allgemeine Chemie,2012,638(1):231-235. [46] WANG S T,FENG X J,YAO J N,et al. Controlling wettability and photochromism in a dual-responsive tungsten oxide film[J]. Angewandte Chemie-International Edition,2006,45(8):1264-1267. [47] GUO C W,FENG L,ZHAI J,et al. Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer[J]. Chemphyschem,2004,5(5):750-753. [48] ZHU W Q,FENG X J,FENG L,et al. UV-manipulated wettability between superhydrophobicity and superhydrophilicity on a transparent and conductive SnO2 nanorod film[J]. Chemical Communications,2006(26):2753-2755. [49] GAO L Y,ZHENG M J,ZHONG M,et al. Preparation and photoinduced wettability conversion of superhydrophobic beta-Ga2O3 nanowire film[J]. Applied Physics Letters,2007,91:013101. [50] MENG M,WU X L,JI X L,et al. Ultrahigh quantum efficiency photodetector and ultrafast reversible surface wettability transition of square In2O3 nanowires[J]. Nano Research,2017,10(8):2772-2781. [51] BRITTAIN W J,SIEWIERSKI L M,PETRASH S,et al. Photoresponsive monolayers containing in-chain azobenzene[J]. Abstracts of Papers of the American Chemical Society,1998,216(3):U6. [52] JIANG W H,WANG G J,HE Y N,et al. Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer[J]. Chemical Communications,2005(28):3550-3552. [53] ZHANG T,WU L Y,WANG Z. Smart UV/Visible light responsive polymer surface switching reversibly between superhydrophobic and superhydrophilic[J]. Surface & Coatings Technology,2017,320:304-310. [54] WANG D,JIAO P W,WANG J M,et al. Fast photo-switched wettability and color of surfaces coated with polymer brushes containing spiropyran[J]. Journal of Applied Polymer Science,2012,125(2):870-875. [55] UYAMA A,YAMAZOE S,SHIGEMATSU S,et al. Reversible photocontrol of surface wettability between hydrophilic and superhydrophobic surfaces on an asymmetric diarylethene solid surface[J]. Langmuir,2011,27(10):6395-6400. [56] SAKAI N,WANG R,FUJISHIMA A,et al. Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces[J]. Langmuir,1998,14(20):5918-5920. [57] WANG R,SAKAI N,FUJISHIMA A,et al. Studies of surface wettability conversion on TiO2 single-crystal surfaces[J]. Journal of Physical Chemistry B,1999,103(12):2188-2194. [58] MIYAUCHI M,NAKAJIMA A,HASHIMOTO K,et al. A highly hydrophilic thin film under 1μW/cm2 UV illumination[J]. Advanced Materials,2000,12(24):1923-1927. [59] NAKAJIMA A,KOIZUMI S,WATANABE T,et al. Photoinduced amphiphilic surface on polycrystalline anatase TiO2 thin films[J]. Langmuir,2000,16(17):7048-7050. [60] LIM H S,HAN J T,KWAK D,et al. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern[J]. Journal of the American Chemical Society,2006,128(45):14458-14459. [61] WAGNER N,THEATO P. Light-induced wettability changes on polymer surfaces[J]. Polymer,2014,55(16SI):3436-3453. [62] KETTUNEN M,SILVENNOINEN R J,HOUBENOV N,et al. Photoswitchable superabsorbency based on nanocellulose aerogels[J]. Advanced Functional Materials,2011,21(3):510-517. [63] JUANG A,SCHERMAN O A,GRUBBS R H,et al. Formation of covalently attached polymer overlayers on Si(111) surfaces using ring-opening metathesis polymerization methods[J]. Langmuir,2001,17(5):1321-1323. [64] UCHIDA K,IZUMI N,SUKATA S,et al. Photoinduced reversible formation of microfibrils on a photochromic diarylethene microcrystalline surface[J]. Angewandte Chemie-International Edition,2006,45(39):6470-6473. [65] WANG D A,LIU Y,LIU X J,et al. Towards a tunable and switchable water adhesion on a TiO2 nanotube film with patterned wettability[J]. Chemical Communications,2009(45):7018-7020. [66] LI C,ZHANG Y Y,JU J,et al. In situ fully light-driven switching of superhydrophobic adhesion[J]. Advanced Functional Materials,2012,22(4):760-763. [67] LIU X J,CAI M R,LIANG Y M,et al. Photo-regulated stick-slip switch of water droplet mobility[J]. Soft Matter,2011,7(7):3331-3336. [68] WEI Y,DU H,KONG J,et al. Fast light-induced reversible wettability of a zinc oxide nanorod array coated with a thin gold layer[J]. Nanotechnology,2017,28(44):445404. [69] SUN T L,WANG G J,FENG L,et al. Reversible switching between superhydrophilicity and superhydrophobicity[J]. Angewandte Chemie-International Edition,2004,43(3):357-360. [70] FU Q,RAO G,BASAME S B,et al. Reversible control of free energy and topography of nanostructured surfaces[J]. Journal of the American Chemical Society,2004,126(29):8904-8905. [71] ZHANG D J,CHENG Z J,KANG H J,et al. A smart superwetting surface with responsivity in both surface chemistry and microstructure[J]. Angewandte Chemie-International Edition,2018,57(14):3701-3705. [72] BANUPRASAD T N,VINAY T V,SUBASH C K,et al. Fast transport of water droplets over a thermo-switchable surface using rewritable wettability gradient[J]. ACS Applied Materials & Interfaces,2017,9(33):28046-28054. [73] WANG N,ZHAO Y,JIANG L. Low-cost,thermoresponsive wettability of surfaces:Poly(N- isopropylacrylamide)/polystyrene composite films prepared by electrospinning[J]. Macromolecular Rapid Communications,2008,29(6):485-489. [74] GANESH V A,RANGANATH A S,SRIDHAR R,et al. Cellulose acetate-poly(N-isopropylacrylamide)-based functional surfaces with temperature-triggered switchable wettability[J]. Macromolecular Rapid Communications,2015,36(14):1368-1373. [75] CHEN L,LIU M J,LIN L,et al. Thermal-responsive hydrogel surface:Tunable wettability and adhesion to oil at the water/solid interface[J]. Soft Matter,2010,6(12):2708-2712. [76] VIHOLA H,LAUKKANEN A,VALTOLA L,et al. Cytotoxicity of thermosensitive polymers poly(N- isopropylacrylamide),poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam)[J]. Biomaterials,2005,26(16):3055-3064. [77] ZAREIE H M,BOYER C,BULMUS V,et al. Temperature-responsive self-assembled monolayers of oligo(ethylene glycol):Control of biomolecular recognition[J]. ACS Nano,2008,2(4):757-765. [78] HU S X,CAO X Y,SONG Y L,et al. New responsive property of poly(epsilon-caprolactone) as the thermal switch from superhydrophobic to superhydrophilic[J]. Chemical Communications,2008,17:2025-2027. [79] WANG Z W,ZHU L Q,LI W P,et al. Rapid reversible superhydrophobicity-to-superhydrophilicity transition on alternating current etched brass[J]. ACS Applied Materials & Interfaces,2013,5(11):4808-4814. [80] LI X Y,JIANG Y,JIANG Z H,et al. Reversible wettability transition between superhydrophilicity and superhydrophobicity through alternate heating-reheating cycle on laser-ablated brass surface[J]. Applied Surface Science,2019,492:349-361. [81] SHANG B,CHEN M,WU L M. NIR-triggered photothermal responsive coatings with remote and localized tunable underwater oil adhesion[J]. Small,2019,15(31):1901888. [82] UHLMANN P,IONOV L,HOUBENOV N,et al. Surface functionalization by smart coatings:Stimuli-responsive binary polymer brushes[J]. Progress in Organic Coatings,2006,55(2):168-174. [83] LEE C H,KANG S K,LIM J A,et al. Electrospun smart fabrics that display pH-responsive tunable wettability[J]. Soft Matter,2012,8(40):10238-10240. [84] GIL E S,HUDSON S M. Stimuli-reponsive polymers and their bioconjugates[J]. Progress in Polymer Science,2004,29(12):1173-1222. [85] STRATAKIS E,MATEESCU A,BARBEROGLOU M,et al. From superhydrophobicity and water repellency to superhydrophilicity:Smart polymer-functionalized surfaces[J]. Chemical Communications,2010,46(23):4136-4138. [86] QU M N,LIU L L,YANG X,et al. A fluoride-free and super-wetting functionalized-material with pH- responsiveness for controllable separation of multiphase oil/water mixtures[J]. Advanced Engineering Materials,2021,23(2):2000983. [87] ZHANG L,ZHANG Z,WANG P. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media:Toward controllable oil/water separation[J]. NPG Asia Materials,2012,4:E8. [88] CHENG M J,LIU Q,JU G N,et al. Bell-shaped superhydrophilic-superhydrophobic- superhydrophilic double transformation on a pH-responsive smart surface[J]. Advanced Materials,2014,26(2):306-310. [89] CHENG B W,LI Z J,LI Q X,et al. Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation[J]. Journal of Membrane Science,2017,534:1-8. [90] LI J J,ZHOU Y N,LUO Z H. Smart fiber membrane for pH-induced oil/water separation[J]. ACS Applied Materials & Interfaces,2015,7(35):19643-19650. [91] PHILIPPOVA O E,HOURDET D,AUDEBERT R,et al. pH-responsive gels of hydrophobically modified poly(acrylic acid)[J]. Macromolecules,1997,30(26):8278-8285. [92] ZHANG J,PEPPAS N A. Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks[J]. Macromolecules,2000,33(1):102-107. [93] VAN DE WETERING P,MORET E E,SCHUURMANS- NIEUWENBROEK N M E,et al. Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery[J]. Bioconjugate Chemistry,1999,10(4):589-597. [94] GOHY J F,LOHMEIJER B,VARSHNEY S K,et al. Stimuli-responsive aqueous micelles from an ABC metallo-supramolecular triblock copolymer[J]. Macromolecules,2002,35(26):9748-9755. [95] FRANCK-LACAZE L,SISTAT P,HUGUET P. Determination of the pKa of poly (4-vinylpyridine)-based weak anion exchange membranes for the investigation of the side proton leakage[J]. Journal of Membrane Science,2009,326(2):650-658. [96] KUMAR S,TONG X,DORY Y L,et al. A CO2-switchable polymer brush for reversible capture and release of proteins[J]. Chemical Communications,2013,49(1):90-92. [97] XU Z,ZHAO Y,WANG H,et al. A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superoleophobic for oil-water separation[J]. Angewandte Chemie-International Edition,2015,54(15):4527-4530. [98] WANG X,SHI Y,GRAFF R W,et al. Developing recyclable pH-responsive magnetic nanoparticles for oil-water separation[J]. Polymer,2015,72:361-367. [99] JULTHONGPIPUT D,LIN Y,TENG J,et al. Y-shaped amphiphilic brushes with switchable micellar surface structures[J]. Journal of the American Chemical Society,2003,125(51):15912-15921. [100] WANG X,QING G Y,JIANG L,et al. Smart surface of water-induced superhydrophobicity[J]. Chemical Communications,2009(19):2658-2660. [101] MINKO S,MULLER M,MOTORNOV M,et al. Two-level structured self-adaptive surfaces with reversibly tunable properties[J]. Journal of the American Chemical Society,2003,125(13):3896-3900. [102] ZHOU Y F,YI T,LI T C,et al. Morphology and wettability tunable two-dimensional superstructure assembled by hydrogen bonds and hydrophobic interactions[J]. Chemistry of Materials,2006,18(13):2974-2981. [103] MUGELE F,BARET J C. Electrowetting:From basics to applications[J]. Journal of Physics-Condensed Matter,2005,17(28):R705-R774. [104] HAYES R A,FEENSTRA B J. Video-speed electronic paper based on electrowetting[J]. Nature,2003,425(6956):383-385. [105] LIPPMANN G. Relations entre les phénomènes électriques et capillaires[J]. Annales De Chimie Et De Physique,1875,5(11):494-549. [106] ZHANG G,DUAN Z,WANG Q G,et al. Electrical potential induced switchable wettability of super-aligned carbon nanotube films[J]. Applied Surface Science,2018,427(A):628-635. [107] KAVOUSANAKIS M E,CHAMAKOS N T,ELLINAS K,et al. How to achieve reversible electrowetting on superhydrophobic surfaces[J]. Langmuir,2018,34(14):4173-4179. [108] ZHAO X D,FAN H M,LUO J,et al. Electrically adjustable,super adhesive force of a superhydrophobic aligned MnO2 nanotube membrane[J]. Advanced Functional Materials,2011,21(1):184-190. [109] LAHANN J,MITRAGOTRI S,TRAN T N,et al. A reversibly switching surface[J]. Science,2003,299(5605):371-374. [110] PERNITES R B,PONNAPATI R R,ADVINCULA R C. Superhydrophobic-superoleophilic polythiophene films with tunable wetting and electrochromism[J]. Advanced Materials,2011,23(28):3207-3213. [111] XU L Y,YE Q,LU X M,et al. Electro-responsively reversible transition of polythiophene films from superhydrophobicity to superhydrophilicity[J]. ACS Applied Materials & Interfaces,2014,6(16):14736-14743. [112] XU L,CHEN W,MULCHANDANI A,et al. Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic[J]. Angewandte Chemie International Edition,2005,44(37):6009-6012. [113] XU L,WANG J X,SONG Y L,et al. Electrically tunable polypyrrole inverse opals with switchable stopband,conductivity,and wettability[J]. Chemistry of Materials,2008,20(11):3554-3556. [114] TAN L,CAO L J,YANG M,et al. Formation of dual-responsive polystyrene/polyaniline microspheres with sea urchin-like and core-shell morphologies[J]. Polymer,2011,52(21):4770-4776. |
[1] | 李维聪, 穆浩, 沈恒龙, 于全庆. 固态锂电池在载运工具中的应用前景分析*[J]. 电气工程学报, 2022, 17(4): 88-102. |
[2] | 刘光, 郭雨润, 张力文, 张德远, 陈华伟. 精准医疗器械生/机接触界面功能化机制研究[J]. 机械工程学报, 2021, 57(11): 33-43. |
[3] | 肖荣诗, 张寰臻, 黄婷. 飞秒激光加工最新研究进展*[J]. 机械工程学报, 2016, 52(17): 176-186. |
[4] | 赵清亮;王义龙;于光;谢大纲;杨元华;卢猛. 基于快速伺服刀架技术的菲涅尔微结构金刚石超精密加工及其控制技术[J]. , 2010, 46(9): 179-186. |
[5] | 杨金勇;黄克正;霍志璞. 基于功能表面的生长型设计理论[J]. , 2008, 44(4): 29-35. |
[6] | 张勇;黄克正;高常青;杨志宏. 基于生长型设计的公差研究[J]. , 2006, 42(增刊): 143-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||