[1] 杨东升,钱坤,司道林. 40 t轴重68 kg/m钢轨18号道岔设计[J]. 铁道建筑,2020,60(4):75-79. YANG Dongsheng,QIAN Kun,SI Daolin. Design of No.18 turnout with 68 kg/m rail for 40 t axle load of[J]. Railway Architecture,2020,60(4):75-79. [2] 高原,王平,陈嵘,等. 重载铁路固定辙叉区轮轨瞬态滚动接触行为分析[J]. 铁道学报,2020,42(6):35-43. GAO Yuan,WANG Ping,CHEN Rong,et al. Analysis of 3D transient wheel-rail rolling contact behavior for fixed frog in heavy haul railway[J]. Acta Sinica Sinica,2020,42(6):35-43. [3] SKRYPNYK R,EKH M,NIELSEN J,et al. Prediction of plastic deformation and wear in railway crossings-comparing the performance of two rail steel grades[J]. Wear,2019,428-429:302-314. [4] SCHUPP G,WEIDEMANN C,MAUER L. Modelling the contact between wheel and rail within multibody system simulation[J]. Vehicle System Dynamics,2004,41(5):349-364. [5] 项载毓,范志勇,刘启昂,等. 高速列车制动闸片摩擦块形状对制动界面摩擦学行为的影响[J]. 摩擦学学报,2021,41(1):95-104. XIANG Zaiyu,FAN Zhiyong,LIU Qiang,et al. Effect of brake pad friction block shape on tribological behavior of brake interface of high-speed train[J]. Tribology,2021,41(1):95-104. [6] 昌超. 车轮型面磨耗对轮轨接触特性及轨道、桥梁振动特性影响分析[D]. 南昌:华东交通大学,2018. CHANG Chao. Analysis of wheel wear on wheel/rail contact characteristics and vibration characteristics of track and bridge[D]. Nanchang:East China Jiaotong University,2018. [7] 许玉德,严道斌,孙小辉. 基于三维弹性体滚动接触理论的轮轨非平面接触算法[J]. 同济大学学报(自然科学版),2020,48(3):63-71. XU Yude,YAN Daobin,SUN Xiaohui. Wheel-rail non-flatc contact algorithm based on three-dimensional elastic bodies rolling contact theory[J]. Journal of Tongji University (Natural Science Edition),2020,48(3):63-71. [8] 张书瑞,李霞,温泽峰,等. 具有曲面接触斑弹性体滚动接触理论及其数值方法[J]. 工程力学,2013,30(2):30-37. ZHANG Shurui,LI Xia,WEN Zefeng,et al. Theory and numerical method of elastic bodies in rolling contact with curve contact area[J]. Engineering Mechanics,2013,30(2):30-37. [9] 李金城,丁军君,牛悦丞,等. 岔区轮轨滚动接触理论分析[J]. 西南交通大学学报,2020,55(6):1355-1361. LI Jincheng,DING Junjun,NIU Yuecheng,et al. Analysis of rolling contact between wheel and rail in switch area[J]. Journal of Southwest Jiaotong University,2020,55(6):1355-1361. [10] 蔡谡,张军,孙传喜. 机车车轮与重载尖轨接触有限元分析[J]. 铁道机车车辆,2015,35(Suppl. 1):21-25. CAI Su,ZHANG Jun,SUN Chuanxi. Finite element analysis on contact of locomotive wheels and worn switch rail[J]. Railway Rolling Stock,2015,35(Supply. 1):21-25. [11] PLETZ M,DAVES W,OSSBERGER H. A wheel set/crossing model regarding impact,sliding and deformation-Explicit finite element approach[J]. Wear,2012,294-295:446-456. [12] 闻方宇,任尊松,孙守光,等. 基于ANSYS/DYNA软件的高速车轮通过道岔的轮轨动力研究[J]. 铁道学报,2014,36(3):14-18. WEN Fangyu,REN Zunsong,SUN Shouguang,et al. ANSYS/DYNA-based study on wheel-rail dynamics of high-speed-wheel-turnout system[J]. Acta Sinica Sinica,2014,36(3):14-18. [13] 龚晓南,叶黔元,徐日庆. 工程材料本构方程[M]. 北京:中国建筑工业出版社,1995. GONG Xiaonan,YE Qianyuan,XU Riqing. Constitutive equation of engineering materials[M]. Beijing:China Construction Industry Press,1995. [14] NAEIMI M,LI Z,PETROV R H,et al. Development of a new downscale setup for wheel-rail contact experiments under impact loading conditions[J]. Experimental Techniques,2018,42(1):1-17. [15] 张振先,谭江,黄双超,等. 复杂运行环境下高速轮轨最佳撒砂增黏策略试验[J]. 中国铁道科学,2020,41(2):123-130. ZHANG Zhenxian,TAN Jiang,HUANG Shuangchao,et al. Experiment study on optimal sanding and adhesion enhancement strantegy for high speed wheel and rail under complicated operation environment[J]. China Railway Science,2020,41(2):123-130. [16] 常崇义,陈波,蔡园武,等. 基于全尺寸试验台的水介质条件下高速轮轨黏着特性试验研究[J]. 中国铁道科学,2019,40(2):27-34. CHANG Chongyi,CHEN Bo,CAI Yuanwu,et al. Experimental study on adhesion property of high-speed wheel and rail in wet condition by full scale roller rig[J]. China Railway Science,2019,40(2):27-34. [17] 周春阳,王俊彪,常崇义. 高速轮轨关系试验台仿真模型的建立及验证[J]. 铁道机车车辆,2017,37(1):61-64. ZHOU Chunyang,WANG Junbiao,CHANG Chongyi. Establishment and verification of simulation model of high-speed wheel/rail relationship test rig[J]. Railway Rolling Stock,2017,37(1):61-64. [18] 肖乾,彭俊江,黄敏,等. 单轮对滚动试验台轮轨黏着-蠕滑虚拟试验系统[J]. 实验技术与管理,2020,37(11):156-165. XIAO Qian,PENG Junjiang,HUANG Min,et al. Virtual testing system of wheel-rail adhesion-creep for single wheel-to-rolling test bench[J]. Experimental Technology and Management,2020,37(11):156-165. [19] 师陆冰,李群,郭俊,等. 不同工况下轮轨黏着-蠕滑曲线特性[J]. 机械工程学报,2019,55(10):151-157. SHI Lubing,LI Qun,GUO Jun,et al. Adhesion-creep curve characteristics of wheel/rail under various conditions[J]. Journal of Mechanical Engineering,2019,55(10):151-157. [20] 任尊松,刘志明,金学松. 心轨轨顶降低值对轮岔动态相互作用影响研究[J]. 铁道学报,2009,31(2):79-83. REN Zunsong,LIU Zhiming,JIN Xuesong. Study on the influence of the nose rail height on the wheel-turnout interaction dynamics[J]. Journal of the China Rail Society,2009,31(2):79-83. [21] 张鹏飞,朱旭东,雷晓燕,等. 翼轨加高值对高速列车过岔动力特性影响分析[J]. 铁道科学与工程学报,2019,16(12):2903-2912. ZHANG Pengfei,ZHU Xudong,LEI Xiaoyan,et al. Influence of wing rail lifting value on dynamic characteristics of high speed train crossing the turnout[J]. Journal of Railway Science and Engineering,2019,16(12):2903-2912. |