[1] 欧阳自远,肖福根. 火星及其环境[J]. 航天器环境工程,2012,29(6):591-601. OUYANG Ziyuan,XIAO Fugen. The Mars and its environment[J]. Spacecraft Environment Engineering,2012,29(6):591-601. [2] YINGST R A,CROPPER K,GUPTA S,et al. Characteristics of pebble and cobble-sized clasts along the Curiosity rover traverse from sol 100 to 750:Terrain types,potential sources,and transport mechanisms[J]. Icarus,2016,280:72-92. [3] 李超,董治宝,吕萍,等. 火星沙丘地貌的形态学窥究[J]. 科学通报,2020,65(1):80-90. LI Chao,DONG Zhibao,LÜ Ping,et al. A morphological insight into the Martian dune geomorphology[J]. Chinese Science Bulletin,2020,65(1):80-90. [4] GOLOMBEK M P,HUERTAS A,MARLOW J,et al. Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces[J]. J Geophys Res-Planets,2008,113:32. [5] 朱大奇,颜明重. 移动机器人路径规划技术综述[J]. 控制与决策,2010,25(7):961-967. ZHU Daqi,YAN Mingzhong. Survey on technology of mobile robot path planning[J]. Control and Decision,2010,25(7):961-967. [6] 王琼,贾阳,陶灼,等. 火星移动智能体技术探讨[J]. 航天器工程,2015,24(4):27-32. WANG Qiong,JIA Yang,TAO Zhuo,et al. Discuss on Mars mobile agent technologies[J]. Spacecraft Engineering,2015,24(4):27-32. [7] WANG S,ZOU M,DANG Z L,et al. Modelling of flexible metal wheels for planetary rover on deformable terrain[J]. Thin-Walled Struct,2019,141:97-110. [8] 薛龙,党兆龙,陈百超,等. 地面力学在火星壤力学参数估计研究中的进展与展望[J]. 宇航学报,2020,41(2):136-146. XUE Long,DANG Zhaolong,CHEN Baichao,et al. Advances and prospects of Martian soil parameter identification based on terramechanics[J]. Journal of Astronautics,2020,41(2):136-146. [9] 薛龙,党兆龙,陈百超,等. 面向火星着陆器缓冲试验的模拟火星壤力学特性分析[J]. 吉林大学学报(工学版),2019,49(1):176-186. XUE Long,DANG Zhaolong,CHEN Baichao,et al. Terra-mechanics of Mars soil simulant for Martian lander's landing tests[J]. Journal of Jilin University(Engineering and Technology Edition),2019,49(1):176-186. [10] 孙泽洲,张熇,贾阳,等. 嫦娥三号探测器地面验证技术[J]. 中国科学:技术科学,2014,44(4):369-376. SUN Zezhou,ZHANG He,JIA Yang,et al. Ground validation technologies for Chang'E-3 lunar spacecraft[J]. Scientia Sinica(Technologica),2014,44(4):369-376. [11] 贾阳,申振荣,庞彧,等. 月面巡视探测器地面试验方法与技术综述[J]. 航天器环境工程,2014,31(5):464-469. JIA Yang,SHEN Zhenrong,PANG Yu,et al. Ground validation technologies for Chang'E-3 lunar spacecraft[J]. Spacecraft Environment Engineering,2014,31(5):464-469. [12] 顾征,任德鹏. 国外星体表面巡视探测器地面试验方法分析[J]. 航天器工程,2010,19(5):117-125. GU Zheng,REN Depeng. Study of ground test for foreign rovers[J]. Journal of aerospace engineering,2010,19(5):117-125. [13] ARVIDSON R E,SQUYRES S W,BAUMGARTNER E I,et al. FIDO prototype Mars rover field trials,Black Rock Summit,Nevada,as test of the ability of robotic mobility systems to conduct field science[J]. J. Geophys Res.-Planets,2002,107(E11):16. [14] ARVIDSON R E. Introduction to the special section:FIDO prototype Mars rover field trial[J]. Journal Geophysical Research-Oceans,2002,107(E8):8001. [15] KEMURDJIAN A,GROMOV V,MISHKINYUK V,et al. Small marsokhod configuration[C]//Proceedings 1992 IEEE International Conference on Robotics and Automation. IEEE,1992:165-168. [16] GULICK V C,MORRIS R L,RUZON M A,et al. Autonomous image analyses during the 1999 Marsokhod rover field test[J]. Journal of Geophysical Research:Planets,2001,106(E4):7745-7763. [17] CHRISTIAN D,WETTERGREEN D,BUALAT M,et al. Field experiments with the Ames Marsokhod rover[C]//Field and Service Robotics. Springer,London,1998:96-103. [18] 贾阳,李晔,吉龙,等. 火星探测任务对环境模拟技术的需求展望[J]. 航天器环境工程,2015,32(5):464-468. JIA Yang,LI Ye,JI Long,et al. Demands of Mars exploration missions on environmental simulation technologies[J]. Spacecraft Environment Engineering,2015,32(5):464-468. [19] 顾苗. 火星表面环境模拟技术[J]. 装备环境工程,2021,18(9):35-42. GU Miao. Mars environment simulation technology[J]. Equipment Environmental Engineering,2021,18(9):35-42. [20] 党兆龙,陈百超. 火星土壤物理力学特性分析[J]. 深空探测学报,2016,3(2):129-133. DANG Zhaolong,CHEN Baichao. Analysis on physical and mechanical properties of Martian soil[J]. Journal of Deep Space Exploration,2016,3(2):129-133. |