[1] 金学松,沈志云. 轮轨滚动接触疲劳问题研究的最新进展[J]. 铁道学报,2001,23(2):92-108. JIN Xuesong,SHEN Zhiyun. Rolling contact fatigue of wheel/rail and its advanced research progress[J]. Journal of the China Railway Society,2001,23(2):92-108. [2] CANNON D F,EDEL K O,GRASSIE S L,et al. Rail defects:An overview[J]. Fatigue & Fracture of Engineering Materials & Structures,2003,26(10):865-886. [3] BENOÎT D,SALIMA B,MARION R. Multiscale characterization of head check initiation on rails under rolling contact fatigue:Mechanical and microstructure analysis[J]. Wear,2016,366:383-391. [4] ZHOU Y,HAN Y B,MU D S,et al. Prediction of the coexistence of rail head check initiation and wear growth[J]. International Journal of Fatigue,2018,112:289-300. [5] YING J,AOKI F,ISHIDA M,et al. Investigation and analysis of the occurrence of rail head checks[J]. International Journal of Railway,2009,2(2):43-49. [6] WANG K,ZHAI W,LV K,et al. Numerical investigation on wheel-rail dynamic vibration excited by rail spalling in high-speed railway[J]. Shock and Vibration,2016,2016(5):1-11. [7] STEENBERGEN M. Rolling contact fatigue:Spalling versus transverse fracture of rails[J]. Wear,2017,380:96-105. [8] 周剑华,任安超,吉玉,等. U71Mn钢轨踏面剥离掉块缺陷分析[J]. 中国铁道科学,2013(2):1-6. ZHOU Jianhua,REN Anchao,JI Yu,et al. Analysis of the reasons for the spalling defects on U17Mn rail treads[J]. China Railway Science,2013(2):1-6. [9] NIA S H,CASANUEVA C,STICHEL S. Prediction of RCF and wear evolution of iron-ore locomotive wheels[J]. Wear,2015,338:62-72. [10] LIU Y,JIANG T,ZHAO X,et al. On the wheel rolling contact fatigue of high power AC locomotives running in complicated environments[J]. Wear,2019,436:202956. [11] EKERG A,KABO E,ANDERSSON H. An engineering model for prediction of rolling contact fatigue of railway wheels[J]. Fatigue and Fracture of Engineering Materials and Structures,2002,25(10):899-909. [12] 赵鑫,温泽峰,王衡禹,等. 中国轨道交通轮轨滚动接触疲劳研究进展[J]. 交通运输工程学报,2021,21(1):1-35. ZHAO Xin,WEN Zefeng,WANG Hengyu,et al. Research progress on wheel/rail rolling contact fatigue of rail transit in China[J]. Journal of Traffic and Transportation Engineering,2021,21(1):1-35. [13] BHARGAVA V,HAHN G T,RUBIN C A. An elastic-plastic finite element model of rolling contact,part 2:Analysis of repeated contacts[J]. Journal of Applied Mechanics,1985,52(1):75-82. [14] 温泽峰,金学松,肖新标. 多步非稳态载荷下钢轨滚动接触应力和弹塑性变形分析[J]. 工程力学,2007,24(12):158-163. WEN Zefeng,JIN Xuesong,XIAO Xinbiao. Elastic-plastic analysis for rolling contact stresses and deformations of rail under multiple-step non-steady state loading[J]. Engineering Mechanics,2007,24(12):158-163. [15] RINGSBERG J. Rolling contact fatigue analysis of railway rails including simulations of the rail manufacturing process and wheel-rail rolling-sliding contact loads[J]. International Journal of Fatigue,2003,25(6):547-558. [16] WEN Z,JIN X,JIANG Y. Elastic-plastic finite element analysis of nonsteady state partial slip wheel-rail rolling contact[J]. Journal of Tribology,2005,127(4):713-721. [17] 高明昕,杨建,付丽华,等. 钢轨循环滚动接触过程残余应力-应变的变化规律研究[J]. 铁道学报,2018,40(11):151-157. GAO Mingxin,YANG Jian,FU Lihua,et al. Study on variation rules of rail residual stress and strain during cyclic rail rolling contact[J]. Journal of the China Railway Society,2018,40(11):151-157. [18] WEN Z,WU L,LI W,et al. Three-dimensional elastic-plastic stress analysis of wheel-rail rolling contact[J]. Wear,2011,271(1):426-436. [19] SAINT-AIMÉ L. Transient numerical simulation of cyclic loading of wheel-rail contact[D]. Lille:Lille University,2017. [20] PLETZ M,MEYER K A,KÜNSTNER D,et al. Cyclic plastic deformation of rails in rolling/sliding contact-quasistatic FE calculations using different plasticity models[J]. Wear,2019,436:202992. [21] MEYER K A,SKRYPNYK R,PLETZ M. Efficient 3d finite element modeling of cyclic elasto-plastic rolling contact[J]. Tribology International,2021,161:107053. [22] 常崇义,王成国. 基于ALE有限元的轮轨稳态滚动接触分析[J]. 中国铁道科学,2009,30(2):87-93. CHANG Chongyi,WANG Chengguo. Wheel-rail steady state rolling contact analysis based on ALE finite element method[J]. China Railway Science,2009,30(2):87-93. [23] FANG T,KAN Q,KANG G,et al. Uniaxial ratcheting and low-cycle fatigue failure of U75V rail steel[J]. 2016 International Symposium on Structural Integrity,2016,853:246-250. [24] 樊译璘,阚前华,赵吉中,等. 不同钢轨材料棘轮行为试验研究[J]. 机械工程学报,2020,56(2):35-42. FAN Yilin,KAN Qianhua,ZHAO Jizhong,et al. Experimental study on ratcheting behaviour of different rail steels[J]. Journal of Mechanical Engineering,2020,56(2):35-42. [25] JIANG Y Y,SEHITOGLU H. Rolling contact stress analysis with the application of a new plasticity model[J]. Wear,1996,191(1):35-44. [26] JIANG Y,SEHITOGLU H. A model for rolling contact failure[J]. Wear,1999,224(1):38-49. [27] XU B,JIANG Y. Elastic-plastic finite element analysis of partial slip rolling contact[J]. Transactions of the ASME,2002,124(1):20-26. [28] RINGSBERG J W. Life prediction of rolling contact fatigue crack initiation[J]. International Journal of Fatigue,2001,23(7):575-586. [29] 赵小罡,赵鑫,温泽峰,等. 轮轨黏着系数对钢轨直裂纹瞬态扩展行为的影响[J]. 工程力学,2018,35(5):248-254. ZHAO Xiaogang,ZHAO Xin,WEN Zefeng,et al. Influence of wheel-rail adhesion coefficient on transient propagation of a vertical rail crack[J]. Engineering Mechanics,2018,35(5):248-254. [30] WEI Z,LIU X,ZHOU Y,et al. Study on the initiation offatigue cracks due to wheel-rail impact at insulated railjoints[C]//Advances in Dynamics of Vehicles on Roadsand Tracks,2020. [31] GHODRATI M,AHMADIAN M,MIRZAEIFAR R. Three-dimensional study of rolling contact fatigue using crystal plasticity and cohesive zone method[J]. International Journal of Fatigue,2019,128:105208. [32] 温泽峰,金学松,肖新标. 非稳态载荷对二维轮轨纯滚动接触应力和变形的影响[J]. 交通运输工程学报,2006(4):14-19. WEN Zefeng,JIN Xuesong,XIAO Xinbiao. Influence of non-steady dtate loading on two-dimensional wheel-rail pure rolling contact stresses and deformation[J]. Journal of Traffic and Transportation Engineering,2006(4):14-19. [33] 周宇,黄旭炜,王树国,等. 考虑轨道几何不平顺的钢轨裂纹萌生与磨耗共存预测[J]. 同济大学学报,2019,47(11):1600-1608. ZHOU Yu,HUANG Xuwei,WANG Shuguo,et al. Prediction of rail rolling contact fatigue crack initiation and wear growth considering track geometry irregularity[J]. Journal of Tongji University,2019,47(11):1600-1608. [34] ZHAO X,WEN Z F,WANG H Y,et al. Modeling of high-speed wheel-rail rolling contact on a corrugated rail and corrugation development[J]. Journal of Zhejiang University-Science A:Applied Physics & Engineering,2014,15(12):946-963. [35] CARTER F W. On the action of a locomotive driving wheel[J]. Proceedings of the Royal Society of London. Series A,Containing Papers of a Mathematical and Physical Character,1926,112(760):151-157. [36] JIANG Y,SEHITOGLU H. Modeling of cyclic ratchetting plasticity,Part I:Development of constitutive relations[J]. ASME Journal Applied Mechanics,1996,63(3):720-725. [37] JIANG Y,SEHITOGLU H. Modeling of cyclic ratchetting plasticity,Part II:Implement of the new model and comparison of theory with experiments[J]. ASME Journal Applied Mechanics,1996,63(3):726-733. [38] JIANG Y. A fatigue criterion for general multiaxial loading[J]. Fatigue & Fracture of Engineering Materials & Structures,2000,23(1):19-32. [39] JIN X S,WEN Z F,WANG K Y,et al. Effect of rail corrugation formation on dynamical behaviour of rail vehicle and track[J]. Journal of Sound and Vibration,2006,293(3/4/5):830-855. |