• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (18): 283-293.doi: 10.3901/JME.2023.18.283

• 运载工程 • 上一篇    下一篇

扫码分享

轮轨非稳态载荷下钢轨疲劳裂纹萌生分析

李伟, 周志军, 温泽峰, 姚学东, 赵鑫   

  1. 西南交通大学牵引动力国家重点实验室 成都 610031
  • 收稿日期:2022-11-12 修回日期:2023-03-25 出版日期:2023-09-20 发布日期:2023-12-07
  • 通讯作者: 李伟(通信作者),男,1985年出生,博士,助理研究员。主要研究方向为轮轨磨耗和疲劳损伤。E-mail:1022liwei@163.com
  • 基金资助:
    国家自然科学基金(52002343)、四川省科技计划(2020YFQ0024)和广西科技计划(桂科AD2029125)资助项目。

Analysis of Rail Fatigue Crack Initiation under Nonsteady State Loading of Wheel-rail

LI Wei, ZHOU Zhijun, WEN Zefeng, YAO Xuedong, ZHAO Xin   

  1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031
  • Received:2022-11-12 Revised:2023-03-25 Online:2023-09-20 Published:2023-12-07

摘要: 为分析轮轨非稳态载荷与钢轨疲劳裂纹萌生的关系,利用有限元法建立二维轮轨非稳态循环滚动接触有限元模型。非稳态以移动法向载荷随时间简谐变化实现,采用考虑棘轮效应的JIANG-SEHITOGLU循环塑性本构模型,计算不同轮轨循环接触状态下的残余应力、应变场,结合多轴疲劳损伤模型,分析钢轨疲劳启裂寿命、位置和方向。计算结果表明,轮轨非稳态循环滚动会引起钢轨接触表面波浪形塑性变形,其波长与载荷压力波长一致。随着循环滚动次数累加,残余应力和剪切应变在钢轨表面变形的波峰和波谷处逐渐增大,并在滚动次数达到40次后趋于稳定,且在波谷处大于波峰处;在钢轨表层产生的轴向残余应力大于纵向。轮轨蠕滑率对钢轨轴向和纵向残余应力影响较小,对残余剪切应变影响较大。车轮单次滚动过于低估残余应力应变和疲劳寿命;考虑车轮循环滚动时,轮轨接触斑全滑动时的钢轨启裂寿命为纯滚动时的4.5倍;波谷位置处的钢轨启裂寿命为波峰位置处的1.4倍。

关键词: 非稳态载荷, 轮轨黏滑滚动, 循环塑性本构模型, 残余应力应变, 启裂寿命

Abstract: In order to analyse the relationship between wheel-rail unsteady state loading and rail fatigue crack initiation, a two-dimensional finite element model of nonsteady state wheel-rail rolling contact is established using the finite element method. The unsteady state rolling contact is simulated by moving the normal load with harmonic variation in time across the rail surface. The JIANG-SEHITOGLU cyclic plasticity constitutive model which can describe the cyclic strain ratcheting effect is implemented into the finite element model for calculating the residual stresses and strains under different wheel-rail cyclic rolling contact conditions. The multi-axial fatigue damage model is adopted to study the fatigue crack initiation life, location and direction in the rail. The results show that the nonsteady cyclic rolling contact loading causes a wavy plastic deformation of the contact surface of rail, the wavelength of which is consistent with that of the normal harmonic load. The residual stress and shear strain gradually increase at the crest and trough with an increasing number of rolling passes and stabilize after 40 rolling passes. The residual stress and shear strain at the trough are greater than those at the crest. The residual stress in the axial direction is greater than that in the longitudinal direction. The wheel-rail creepage has a small effect on the residual stresses in the axial and longitudinal directions and has a large effect on the residual shear strain. A single rolling pass seriously underestimates the residual stress and strain and fatigue life of the rail. When multiple rolling passes are considered, the fatigue crack initiation life of rail for full slip rolling contact is 4.5 times of that for pure rolling contact; the fatigue crack initiation life of rail near the trough of wavy surface deformation is 1.4 times of that near the crest.

Key words: nonsteady state loading, wheel-rail stick-slip rolling, cyclic plasticity constitutive model, residual stress and strain, crack initiation life

中图分类号: