• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (16): 263-274.doi: 10.3901/JME.2023.16.263

• 运载工程 • 上一篇    下一篇

扫码分享

基于悬架摆臂移除的车辆多体系统动力学半递推建模

戴维1, 潘勇军1,2, 张志飞1,2   

  1. 1. 重庆大学机械与运载工程学院 重庆 400044;
    2. 重庆大学机械传动国家重点实验室 重庆 400044
  • 收稿日期:2022-10-15 修回日期:2023-01-16 出版日期:2023-08-20 发布日期:2023-11-15
  • 通讯作者: 潘勇军(通信作者),男,1982年出生,博士,副教授,博士研究生导师。主要研究方向为计算多体动力学,车辆系统动力学与控制等。E-mail:yongjun.pan@cqu.edu.cn
  • 作者简介:戴维,男,1996年出生,博士研究生。主要研究方向为车辆多体动力学建模与控制。E-mail:weidai@cqu.edu.cn;张志飞,男,1983年出生,博士,教授,博士研究生导师。主要研究方向为车辆系统动力学与控制,车辆振动噪声及控制等。E-mail:cquzzf@cqu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12072050,11702039)。

Semi-recursive Modeling of Vehicle Multibody System Based on Suspension-control-arm Removal Technique

DAI Wei1, PAN Yongjun1,2, ZHANG Zhifei1,2   

  1. 1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044;
    2. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044
  • Received:2022-10-15 Revised:2023-01-16 Online:2023-08-20 Published:2023-11-15

摘要: 西班牙学者GARCíA提出一种两步式半递推多体动力学建模方法,该方法利用一组独立的相对坐标来描述多体系统的控制方程,具有较高的计算效率,但悬架摆臂建模过程较为复杂且计算效率依然无法满足超实时仿真需求,针对该问题提出一种基于悬架摆臂移除的车辆多体系统动力学半递推建模技术。通过移除悬架摆臂生成开环多体系统并引入闭环约束方程,计算由移除悬架摆臂产生的惯性力和外力并基于开环系统拓扑结构积累,推导车辆闭环多体系统的控制方程。运用四阶Runge-Kutta (4th RK)和Adams-Bashforth-Moulton (ABM)数值积分方法求解该多体动力学模型,评估悬架摆臂移除技术在4th RK和ABM算法下的计算精度和计算效率。结果表明,所提出的悬架摆臂移除技术在不同数值积分方法下都能够实现车辆多体系统的精确实时/超实时仿真,可为未来高度或者完全自动驾驶汽车主动安全控制提供精确高效的动力学模型。

关键词: 半递推建模, 多体系统动力学, 车辆系统动力学, 闭环约束方程, 数值算法

Abstract: A double-step semi-recursive multibody formulation is proposed by Spanish scholar Javier García de Jalón. This method uses a set of independent relative coordinates to describe the governing equations of the system with a high computational efficiency.However, the modeling of the suspension-control-arm is difficult and the method is unable to perform faster-than-real-time simulation.This study proposed a semi-recursive vehicle multibody system modeling technique based on the suspension-control-arm removal.The vehicle system tree-topology is obtained by removing left and right suspension-control-arms. The loop-closure constraint equations are generated as a consequence. The related inertial and external forces are calculated and assigned to the whole system via recursive rule. Therefore, the governing equations resulting from the suspension-control-arm removal technique are derived. The 4th order Runge-Kutta(4th RK) and Adams-Bashforth-Moulton(ABM) methods are utilized during the numerical integration process. The results show that, upon implementation of the 4th RK and ABM algorithms, the accurate real-time simulation is performed. The proposed technique provides a theoretical basis for active safety control in autonomous vehicles.

Key words: semi-recursive modeling, multibody system dynamics, vehicle system dynamics, loop-closure constraint equations, numerical algorithm

中图分类号: