[1] 洪嘉振. 计算多体系统动力学[M]. 北京:高等教育出版社,1999. HONG Jiazhen. Computational dynamics of multibody systems[M]. Beijing:Higher Education Press,1999. [2] EBERHARD P,SCHIEHLEN W. Computational dynamics of multibody systems:History,formalisms,and applications[J]. Journal of Computational and Nonlinear Dynamics,2006,1(1):3-12. [3] PETZOLD L R. Numerical solution of differential-algebraic equations in mechanical systems simulation[J]. Physica D:Nonlinear Phenomena,1992,60(1):269-279. [4] SHABANA A A. Computational dynamics[M]. John Wiley & Sons,2009. [5] WASFY T M,NOOR A K. Computational strategies for flexible multibody systems[J]. Applied Mechanics Reviews,2003,56(6):553-613. [6] 潘振宽,赵维加,洪嘉振,等. 多体系统动力学微分/代数方程组数值方法[J]. 力学进展,1996,26(1):28-40. PAN Zhenkuan,ZHAO Weijia,HONG Jiazhen,et al. On numercial algorithms for differential/algebraic equation of multibody systems[J]. Advances in Mechanics,1996,26(1):28-40. [7] 王琪,陆启韶. 多体系统 Lagrange 方程数值算法的研究进展[J]. 力学进展,2001,31(1):9-17. WANG Qi,LU Qishao. Advances in the numerical methods for Lagrange’s equations of multibody systems[J]. Advances in Mechanics,2001,31(1):9-17. [8] 王琪,庄方方,郭易圆,等. 非光滑多体系统动力学数值算法的研究进展[J]. 力学进展,2013,43(1):101-111. WANG Qi,ZHUANG Fangfang,GUO Yiyuan,et al. Advances in the research on numerical methods for non-smooth dynamics of multibody systems[J]. Advances in Mechanics,2013,43(1):101-111. [9] 姚廷强,迟毅林,黄亚宇. 柔性多体系统动力学新型广义-α数值分析方法[J]. 机械工程学报,2009,45(10):53-60. YAO Tingqiang,CHI Yilin,HUANG Yayu. New generalized-α algorithms for multibody dynamics[J]. Journal of Mechanical Engineering,2009,45(10):53-60. [10] 刘颖,马建敏. 多体系统动力学方程的基于离散零空间理论的 Newmark 积分算法[J]. 机械工程学报,2012,48(5):87-91. LIU Ying,MA Jianmin. Discrete null space method for the Newmark integration of multibody dynamic systems[J]. Journal of Mechanical Engineering,2012,48(5):87-91. [11] WU J L,ZHANG Y Q. The dynamic analysis of multibody systems with uncertain parameters using interval method[J]. Applied Mechanics and Materials,2012,152:1555-1561. [12] ASCHER U M,PETZOLD L R. Computer methods for ordinary differential equations and differential-algebraic equations[M]. Philadelphia:Society for Industrial and Applied Mathematics,1998. [13] SHABANA A A,HUSSEIN B A. A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations:Application to multibody systems[J]. Journal of Sound and Vibration,2009,327(3):557-563. [14] HUSSEIN B A,SHABANA A A. Sparse matrix implicit numerical integration of the stiff differential/algebraic equations:Implementation[J]. Nonlinear Dynamics,2011,65(4):369-382. [15] BAUMGARTE J. Stabilization of constraints and integrals of motion in dynamical systems[J]. Computer Methods in Applied Mechanics and Engineering,1972,1(1):1-16. [16] GEAR C W,LEIMKUHLER B,GUPTA G K. Automatic integration of Euler-Lagrange equations with constraints[J]. Journal of Computational and Applied Mathematics,1985,12:77-90. [17] FISETTE P,VANEGHEM B. Numerical integration of multibody system dynamic equations using the coordinate partitioning method in an implicit Newmark scheme[J]. Computer Methods in Applied Mechanics and Engineering,1996,135(1):85-105. [18] HAUG E J,NEGRUT D,IANCU M. A state-space-based implicit integration algorithm for differential-algebraic equations of multibody dynamics[J]. Journal of Structural Mechanics,1997,25(3):311-334. [19] McGRATHh J F,RAMPALLI R. Implicit integration with coordinate partitioning[J]. Applied Mathematics and Computation,2000,111(1):7-31. [20] SANDU A,NEGRUT D,HAUG E J,et al. A Rosenbrock-Nystrom state space implicit approach for the dynamic analysis of mechanical systems:I—theoretical formulation[J]. Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics,2003,217(4):263-271. [21] NEGRUT D,HAUG E J,GERMAN H C. An implicit Runge-Kutta method for integration of differential algebraic equations of multibody dynamics[J]. Multibody System Dynamics,2003,9(2):121-142. [22] NEGRUT D,RAMPALLI R,OTTARSSON G,et al. On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (DETC2005-85096)[J]. Journal of Computational and Nonlinear Dynamics,2007,2(1):73-85. [23] HUSSEIN B,NEGRUT D,SHABANA A A. Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations[J]. Nonlinear Dynamics,2008,54(4):283-296. [24] 袁兆鼎,费景高,刘德贵. 刚性常微分方程初值问题的数值解法[M]. 北京:科学出版社,1987. YUAN Zhaoding,FEI Jinggao,LIU Degui. Numerical methods for the initial value problems of stiff ordinary differential equations[M]. Beijing:Science Press,1987. [25] CAMPANELLI M,BERZERI M,SHABANA A A. Performance of the incremental and non-incremental finite element formulations in flexible multibody problems[J]. Journal of Mechanical Design,2000,122(4):498-507. [26] BERZERI M,SHABANA A A. Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation[J]. Journal of Sound and Vibration,2000,235(4):539-565. [27] MIKKOLA A,SHABANA A A,SANCHEZ-REBOLLO C,et al. Comparison between ANCF and B-spline surfaces[J]. Multibody System Dynamics,2013,30(2):119-138. |