[1] ACUA P, ZHANG J, YIN G Z, et al. Bio-based rigid polyurethane foam from castor oil with excellent flame retardancy and high insulation capacity via cooperation with carbon-based materials[J]. Journal of Materials Science, 2021, 56(3):2684-2701. [2] 韦青,郭彦峰,付云岗,等. 聚乙烯泡沫单填充纸蜂窝夹层管的轴向缓冲吸能特性[J]. 机械工程学报, 2021, 57(2):112-120. WEI Qing, GUO Yanfeng, FU Yungang, et al. Axial buffer energy absorption characteristics of polyethylene foam single-filled paper honeycomb sandwich pipe[J]. Journal of Mechanical Engineering, 2021, 57(2):112-120. [3] XU J S, WU Y Q, ZHANG B L, et al. Synthesis and synergistic flame-retardant effects of rigid polyurethane foams used reactive DOPO-based polyols combination with expandable graphite[J]. Journal of Applied Polymer Science, 2020, 138(16):50223. [4] SZCZOTOK A M, DAN M, SERRANO A, et al. Flame retardancy of rigid polyurethane foams containing thermoregulating microcapsules with phosphazene-based monomers[J]. Journal of Materials Science, 2021, 56(2):1-17. [5] 曲杰,胡焱松,岳凯,等. 硬质聚氨酯泡沫在多轴压缩试验下的力学特性研究[J]. 机械工程学报, 2017, 53(20):89-97. QU Jie, HU Yansong, YUE Kai, et al. Research on mechanical properties of rigid polyurethane foam under multiaxial compression test[J]. Journal of Mechanical Engineering, 2017, 53(20):89-97. [6] KAO Y T, RAVINDRA A A, PAYNE N, et al. Low-velocity impact response of 3D-printed lattice structure with foam reinforcement[J]. Composite Structures, 2018, 192:93-100. [7] KOOHBOR B, KIDANE A, LU W Y. Effect of specimen size, compressibility and inertia on the response of rigid polymer foams subjected to high velocity direct impact loading[J]. International Journal of Impact Engineering, 2016, 98:62-74. [8] HWANG B K, KIM S K, KIM J H, et al. Dynamic compressive behavior of rigid polyurethane foam with various densities under different temperatures[J]. International Journal of Mechanical Sciences, 2020, 180:105657. [9] KUMAR B B, ZELTMANN S E, DODDAMANI M, et al. Effect of cenosphere surface treatment and blending method on the tensile properties of thermoplastic matrix syntactic foams[J]. Journal of Applied Polymer Science, 2016, 133(35):43881. [10] YANG C, XING Z, ZHANG M, et al. Supercritical CO2 foaming of radiation crosslinked polypropylene/high-density polyethylene blend:Cell structure and tensile property[J]. Radiation Physics and Chemistry, 2017, 141:276-283. [11] 姜锡权,陶洁,王玉志. 改进的霍普金森压杆技术在聚氨脂泡沫塑料动态力学性能研究中的应用[J]. 爆炸与冲击, 2007, 27(4):358-363. JIANG Xiquan, TAO Jie, WANG Yuzhi. The application of improved Hopkinson pressure bar technology in the study of dynamic mechanical properties of polyurethane foams[J]. Explosion and Shock, 2007, 27(4):358-363. [12] KOOHBOR B, KIDANE A, LU W Y, et al. Investigation of the dynamic stress-strain response of compressible polymeric foam using a nonparametric analysis[J]. International Journal of Impact Engineering, 2016, 91:170-182. [13] 谢若泽,卢子兴,田常津,等. 聚氨酯泡沫塑料动态剪切力学行为的研究[J]. 爆炸与冲击, 1999, 19(4):315-321. XIE Ruoze, LU Zixing, TIAN Changjin, et al. Studies of the dynamic shear mechanical properties of compression on polyurethane foamedplastics[J]. Explosion and Shock, 1999, 19(4):315-321. [14] FAN Zhiqiang, ZHANG Bingbing, LIU Yingbin, et al. Interpenetrating phase composite foam based on porous aluminum skeleton for high energy absorption[J]. Polymer Testing, 2021, 93:106917. [15] BRACE W F, JONES A H. Comparison of uniaxial deformation in shock and static loading of three rocks[J]. Journal of Geophysical Research, 1971, 76(20):4913-4921. [16] BERTHOLF L D, KARNES C H. Two-dimensional analysis of the split Hopkinson pressure bar system[J]. Journal of the Mechanics and Physics of Solids, 1975, 23(1):1-19. [17] FORRESTAL M J, WRIGHT T W, CHEN W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test[J]. International Journal of Impact Engineering, 2007, 34(3):405-411. [18] 路德春,穆嵩,周鑫,等. 混凝土材料的动态承载力与惯性效应[J]. 北京工业大学学报, 2019, 45(4):345-352. LU Dechun, MU Song, ZHOU Xin, et al. Dynamic bearing capacity and inertial effect of concrete materials[J]. Journal of Beijing University of Technology, 2019, 45(4):345-352. [19] 张书,卢玉斌. 混凝土SHPB实验中惯性效应的机理及其影响因素研究[J]. 兵工学报, 2014(S2):281-287. ZHANG Shu, LU Yubin. Research on the mechanism and influencing factors of inertia effect in concrete SHPB experiment[J]. Acta Armamentarii, 2014(S2):281-287. [20] 陈滔,李庆斌,管俊峰. 混凝土压缩性对SHPB试验中惯性效应的影响[J]. 固体力学学报, 2013(5):515-520. CHEN Tao, LI Qingbin, GUAN Junfeng. The influence of concrete compressibility on the inertial effect in SHPB test[J]. Chinese Journal of Solid Mechanics, 2013(5):515-520. [21] 王永刚,王礼立. 大直径SHPB几何弥散效应及其表现的数值分析研究[J]. 爆炸与冲击, 2003(23):131-132. WANG Yonggang, WANG Lili. Numerical analysis of large-diameter SHPB geometric dispersion effect and its performance[J]. Explosion and Shock, 2003(23):131-132. [22] 吕晓聪,许金余,赵德辉,等. 冲击荷载循环作用下砂岩动态力学性能的围压效应研究[J]. 工程力学, 2011, 28(1):138-144. LÜ Xiaocong, XU Jinyu, ZHAO Dehui, et al. Research on the confining pressure effect of sandstone dynamic mechanical properties under impact load cycles[J]. Engineering Mechanics, 2011, 28(1):138-144. [23] 俞缙,穆康,李宏,等. 砂岩渗透性演化特性的孔隙率分布细观模拟分析[J]. 工程力学, 2014, 31(11):124-131. YU Jin, MU Kang, LI Hong, et al. Micro-simulation analysis of porosity distribution of sandstone permeability evolution characteristics[J]. Engineering Mechanics, 2014, 31(11):124-131. [24] 刘军忠,许金余,吕晓聪,等. 围压下岩石的冲击力学行为及动态统计损伤本构模型研究[J]. 工程力学, 2012, 29(1):55-63. LIU Junzhong, XU Jinyu, LÜ Xiaocong, et al. Research on impact mechanics behavior and dynamic statistical damage constitutive model of rock under confining pressure[J]. Engineering Mechanics, 2012, 29(1):55-63. [25] VINAY V C, CHANDAN M R, VARMA M, et al. Study of castor oil-based auxetic polyurethane foams for cushioning applications[J]. Polymer International, 2021, 70(11):1631-1639. [26] AABID H S, RAJAN J. Reinstating structural stability of castor oil based flexible polyurethane foam using glycerol[J]. Chemistry Select, 2020, 5(13):3959-3964. [27] RAFTOPOULOS K N, PAGACZ J, OZIMEK J, et al. Molecular dynamics in polyurethane foams chemically reinforced with POSS[J]. Polymer Bulletin, 2019, 76(6):2887-2898. [28] 陈网桦,彭金华,葛桂兰,等. 聚氨酯泡沫塑料抗冲击性能的实验研究[J]. 弹道学报, 1997, 9(4):84-88. CHEN Wanghua, PENG Jinhua, GE Guilan, et al. The experimental investigation of shock-resistant of polyurethane foams plastics[J]. Journal of Ballistics, 1997, 9(4):84-88. [29] GOEL M D, MONDAL D P, YADAV M S, et al. Effect of strain rate and relative density on compressive deformation behavior of aluminum cenosphere syntactic foam[J]. Materials Science and Engineering, 2014, 590(1):406-415. [30] SONG B, CHEN W W, LU W Y. Mechanical characterization at intermedite strain rates for rate effects on an epoxy syntactic foam[J]. International Journal of Mechanical Sciences, 2007, 49(12):1336-1343. [31] GUPTA N, SHUNMUGASAMY V C. High strain rate compressive response of syntactic foams:Trends in mechanical properties and failure mechanisms[J]. Materials Science & Engineering A, 2011, 528(25-26):7596-7605. [32] 陈网桦,刘建飞,彭金华,等. 硬质聚氨酯泡沫塑料的SHPB实验研究[J]. 实验力学, 1997, 12(2):192-197. CHEN Wanghua, LIU Jianfei, PENG Jinhua, et al. Investigation for mechanical properties of rigid polyurethane foam plastics by SHPB tests[J]. Journal of Experimental Mechanics, 1997, 12(2):192-197. [33] CHEN W W, WU Q, KANG J H, et al. Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001-750 s-1[J]. International Journal of Solids and Structures, 2001, 38:8989-8998. [34] NASSER S N, CHOI J Y, GUO W G, et al. Very high strain-rate response of a NiTi shape-memory alloy[J]. Mechanics of Materials, 2005, 37:287-298. [35] 李潇,方秦,孔祥振,等. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7):187-193. LI Xiao, FANG Qin, KONG Xiangzhen, et al. SHPB experiment of mortar material and numerical simulation of inertial effect[J]. Engineering Mechanics, 2018, 35(7):187-193. [36] KONG X, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model[J]. International Journal of Impact Engineering, 2016, 95:61-71. [37] 郭伟国,李玉龙,索涛. 应力波基础简明教程[M]. 西安:西北工业大学出版社, 2007. GUO Weiguo, LI Yulong, SUO Tao. A brief course on stress wave basics[M]. Xi'an:Northwestern Polytechnical University Press, 2007. [38] 方秦,洪建,张锦华,等. 混凝土类材料SHPB实验若干问题探讨[J]. 工程力学, 2014, 31(5):1-14. FANG Qin, HONG Jian, ZHANG Jinhua, et al. Issues of SHPB test on concrete-like material[J]. Engineering Mechanics, 2014, 31(5):1-14. [39] DAI X, SABUWALA T, GIOIA G. Experiments on elastic polyether polyurethane foams under multiaxial loading:Mechanical response and strain fields[J]. Journal of Applied Mechanics, 2011, 78(3):2388-2399. [40] 陈诚. 车用硬质聚氨酯泡沫力学实验及有限元仿真[D]. 广州:华南理工大学, 2015. CHEN Cheng. Mechanical experiment and finite element simulation of rigid polyurethane foam for vehicles[D]. Guangzhou:South China University of Technology, 2015. [41] 滕军,李祚华,王孝锋,等. 基于ABAQUS的混凝土材料子程序开发与应用[J]. 建筑结构学报, 2009, 30(S1):218-223. TENG Jun, LI Zuohua, WANG Xiaofeng, et al. Development and application of concrete material subprogram based on ABAQUS[J]. Journal of Building Structures, 2009, 30(S1):218-223. |