机械工程学报 ›› 2023, Vol. 59 ›› Issue (16): 2-17.doi: 10.3901/JME.2023.16.002
• 特邀专栏:机械结构强度设计与完整性评估 • 上一篇 下一篇
张显程, 王润梓, 涂善东, 谷行行, 孙莉, 李凯尚
收稿日期:
2023-05-25
修回日期:
2023-07-09
出版日期:
2023-08-20
发布日期:
2023-11-15
作者简介:
张显程,男,1979年出生,博士,教授,博士研究生导师。主要研究方向为机械装备寿命保障理论与技术。E-mail:xczhang@ecust.edu.cn
基金资助:
ZHANG Xiancheng, WANG Runzi, TU Shantung, GU Hanghang, SUN Li, LI Kaishang
Received:
2023-05-25
Revised:
2023-07-09
Online:
2023-08-20
Published:
2023-11-15
摘要: 在航空航天、石油化工与能源动力等诸多领域,关键机械装备的长寿命高可靠运行需求与其严苛服役环境之间的矛盾日益凸显。一方面,基于单一损伤或失效模式的寿命设计方法无法涵盖多损伤交互模式和多尺度的损伤特性;另一方面,经典连续损伤理论无法很好地满足工程设计的需求。为了提高损伤理论的工程适用性和泛用性,工程损伤理论立足于机械装备的本质安全保障,在揭示材料性能退化和载荷变化等基础上,建立累积损伤-损伤阈值干涉准则以实现精准的寿命设计;评估机械装备服役过程中的损伤状态和剩余寿命,以支撑机械装备服役阶段的运维决策与管理。介绍工程损伤理论的科学内涵、梳理过去的发展历程并展望了未来的关键挑战。对应工程损伤理论的三个核心原则,重点回顾力学性能退化的损伤测试技术、考虑多机制交互的损伤评定方法以及面向工程对象的应用载体等方面的研究进展。在大数据的时代背景下,进一步研判了工程损伤理论在寿命管理发展方向上的机遇与挑战,以期实现数据驱动和物理损伤的深度融合,突破关键工程机械装备“损伤理论-信息科学-寿命设计-健康管理”的技术闭环瓶颈难题。
中图分类号:
张显程, 王润梓, 涂善东, 谷行行, 孙莉, 李凯尚. 工程损伤理论:内涵、挑战与展望[J]. 机械工程学报, 2023, 59(16): 2-17.
ZHANG Xiancheng, WANG Runzi, TU Shantung, GU Hanghang, SUN Li, LI Kaishang. Engineering Damage Theory:Connotation, Challenge and Prospect[J]. Journal of Mechanical Engineering, 2023, 59(16): 2-17.
[1] ZHU Shunpeng,HUANG Hongzhong,HE Liping,et al.A generalized energy-based fatigue-creep damage parameter for life prediction of turbine disk alloys[J].Engineering Fracture Mechanics,2012,90:89-100. [2] WANG Runzi,GU Hanghang,ZHU Shunpeng,et al. A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures[J]. Reliability Engineering&System Safety,2022,225:108523. [3] LI Kaishang,WANG Ji,FAN Zhichao,et al. A life prediction method and damage assessment for creep-fatigue combined with high-low cyclic loading[J].International Journal of Fatigue,2022,161:106923. [4] ZHU Shunpeng,YUE Peng,YU Zhengyong,et al. A combined high and low cycle fatigue model for life prediction of turbine blades[J]. Materials(Basel),2017,10(7):698. [5] VILLASANTE M. Predictive methods for combined cycle fatigue in gas turbine blades[J]. Aerodays,Madrid,2011,30:1-8. [6] CIAVARELLA M,DEMELIO G. A review of analytical aspects of fretting fatigue,with extension to damage parameters, and application to dovetail joints[J].International Journal of Solids and Structures,2001,38(10):1791-1811. [7] KALINA A. Combined-cycle system with novel bottoming cycle[J]. Asme J Engineering for Turbines&Power,1984,106(4):737-742. [8] CHIESA P,MACCHI E. A thermodynamic analysis of different options to break 60%electric efficiency in combined cycle power plants[J]. Journal of Engineering for Gas Turbines and Power,2004,126(4):770-785. [9] HOLT N. Operating experience and improvement opportunities for coal-based igcc plants[J]. Materials at High Temperatures,2003,20(1):1-6. [10] 姜祥伟.重型工业燃气轮机涡轮叶片的服役损伤与寿命预测研究[D].北京:中国科学院大学,2015.JIANG Xiangwei. Study on service damage and life prediction of turbine blades in heavy industrial gas turbines[D]. Beijing:University of Chinese Academy of Sciences,2015. [11] CORMOS C. Evaluation of energy integration aspects for igcc-based hydrogen and electricity co-production with carbon capture and storage[J]. International Journal of Hydrogen Energy,2010,35(14):7485-7497. [12] 李祥晟,郭菡,郁鸿飞,等.掺氢对燃气轮机燃烧室燃烧和排放性能的影响研究[J].西安交通大学学报,2022,56(6):9-16.LI Xiangsheng,GUO Han,YU Hongfei,et al. Study on combustion and emission performance of hydrogen fuel gas turbine combustor[J]. Journal of Xi'an Jiaotong University,2022,56(6):9-16. [13] WANG Jianjun, ZHANG Shuo, HUO Jikun, et al.Dispatch optimization of thermal power unit flexibility transformation under the deep peak shaving demand based on invasive weed optimization[J]. Journal of Cleaner Production,2021(5):128047. [14] SAIDUR R,ABDELAZIZ E,DEMIRBAS A,et al. A review on biomass as a fuel for boilers[J]. Renewable and Sustainable Energy Reviews,2011,15(5):2262-2289. [15] GOLDBERG S, RONSNER R. Nuclear reactors:Generation to generation[C/CD]//American Academy of Arts and Sciences,Cambridg,2011. [16] GONG Xing, SHORT M P, AUGERT, et al.Environmental degradation of structural materials in liquid lead-and lead-bismuth eutectic-cooled reactors[J].Progress in Materials Science,2022,126:100920. [17] FAZIO C,SOBOLEV V P,AERTS A,et al. Handbook on lead-bismuth eutectic alloy and lead properties,materials compatibility, thermal-hydraulics and technologies-2015edition[R]. Paris:Oganisation for Economic Co-operation and Development,Country of Publication Nuclear Energy Agency of the OECD(NEA),2015. [18] 王润梓,廖鼎,张显程,等.高温结构蠕变疲劳寿命设计方法:从材料到结构[J].机械工程学报,2021,57(16):66-86,105.WANG Runzi,LIAO Ding,ZHANG Xiancheng,et al.Creep-fatigue life design methods in high-temperature structures:From materials to components[J]. Journal of Mechanical Engineering,2021,57(16):66-86,105. [19] 王康康,王小威,温建锋,等.蠕变断裂:从物理失效机制到结构寿命预测[J].机械工程学报,2021,57(16):132-152.WANG Kangkang,WANG Xiaowei,WEN Jianfeng,et al.Creep rupture:From physical failure mechanisms to lifetime prediction of structures[J]. Journal of Mechanical Engineering,2021,57(16):132-152. [20] ZHENG Xiaotao,CHEN Haofeng,MA Zhiyuan,et al. A novel fatigue assessment approach by direct steady cycle analysis(DSCA)considering the temperature-dependent strain hardening effect[J]. International Journal of Pressure Vessels and Piping,2019,170:66-72. [21] CHEN Haofeng,PONTER A R S. Structural integrity assessment of superheater outlet penetration tubeplate[J].International Journal of Pressure Vessels and Piping,2009,86(7):412-419. [22] DUARTE D,MARADO B,NOGUEIRA J,et al. An overview on how failure analysis contributes to flight safety in the portuguese air force[J]. Engineering Failure Analysis,2016,65:86-101. [23] LIAO Ding,ZHU Shunpeng,KESHTEGAR B,et al.Probabilistic framework for fatigue life assessment of notched components under size effects[J]. International Journal of Mechanical Sciences,2020,181:105685. [24] TAN Jianping,TU Shantung,WANG Guozhen,et al.Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr-Mo-V steel[J]. Engineering Fracture Mechanics,2013,99:324-334. [25] YAO Huatang,XUAN Fuzhen,WANG Zhengdong,et al.A review of creep analysis and design under multi-axial stress states[J]. Nuclear Engineering and Design,2007,237(18):1969-1986. [26] National Academiesof Sciences E,Medicine. Advanced technologies for gas turbines[M]. Cambridge:National Academies Press,2020. [27] 董聪,杨庆雄.细观损伤力学新进展[J].强度与环境,1993(4):1-9.DONG Cong, YANG Qingxiong. New progress in meso-damage mechanics[J]. Structure&Environment Engineering,1993(4):1-9. [28] LEVO E,GRANBERG F,FRIDLUND C,et al. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys[J]. Journal of Nuclear Materials,2017,490:323-332. [29] KONTIS P,KOSTKA A,RAABE D,et al. Influence of composition and precipitation evolution on damage at grain boundaries in a crept polycrystalline Ni-Based superalloy[J]. Acta Materialia,2019,166:158-167. [30] 孙李刚,凌超,陈浩,等.结构完整性分析中的多尺度力学方法[J].机械工程学报,2021,57(16):106-121.SUN Ligang,LING Chao,CHEN Hao,et al. Application of multiscale mechanics methods in structural integrity analysis[J]. Journal of Mechanical Engineering,2021,57(16):106-121. [31] YAMAKOV V, WOLF D, PHILLPOT S, et al.Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation[J]. Acta Materialia,2002,50(1):61-73. [32] 涂善东,王正东,陈建钧,等.基于结构弱点分析的高温构件延寿修复技术[J].压力容器,2004,21(9):1-8.TU Shantung,WANG Zhengdong,CHEN Jianjun,et al.Structural weakness spotting for life extension repair of high temperature components[J]. Pressure Vessel Technology,2004,21(9):1-8. [33] JU Yunbyum,KOYAMA M,SAWAGUCHI T,et al.Effects of e-martensitic transformation on crack tip deformation,plastic damage accumulation,and slip plane cracking associated with low-cycle fatigue crack growth[J].International Journal of Fatigue,2017,103:533-545. [34] LI Kaishang,WANG Runzi,YUAN Guangjian,et al. A crystal plasticity-based approach for creep-fatigue life prediction and damage evaluation in a Nickel-based superalloy[J]. International Journal of Fatigue,2021,143:106031. [35] LONG D J,WAN Weifeng,DUNNE F P E. The influence of microstructure on short fatigue crack growth rates in Zircaloy-4:Crystal plasticity modelling and experiment[J].International Journal of Fatigue,2023,167:107385. [36] SUN Li,ZHANG Xiancheng,WANG Runzi,et al.Evaluation of fatigue and creep-fatigue damage levels on the basis of engineering damage mechanics approach[J].International Journal of Fatigue,2023,166:107277. [37] 陈波,李付国,何敏.延性金属材料损伤变量的实验表征方法研究[J].稀有金属材料与工程,2011,40(11):2022-2025.CHEN Bo, LI Fuguo, HE Min. Experimental characterization of damage variables of ductile metal[J].Rare Metal Materials and Engineering,2011,40(11):2022-2025. [38] LEMAITRE J,CHABOCHE J L. Mechanics of solid materials[M]. Cambridge:Cambridge University Press,1994. [39] LEMAITRE J, DESMORAT R. Engineering damage mechanics:Ductile,creep,fatigue and brittle failures[M].New York:Springer Science&Business Media,2006. [40] GUAN Kaishu, HUA Li, WANG Qiongqi, et al.Assessment of toughness in long term service CrMo low alloy steel by fracture toughness and small punch test[J].Nuclear Engineering and Design, 2011, 241(5):1407-1413. [41] NAKATA T,KOMAZAKI S I,KOHNO Y,et al.Development of a small punch testing method to evaluate the creep property of high Cr ferritic steel:Part II-Stress analysis of small punch test specimen by finite element method[J]. Materials Science and Engineering:A,2016,666:80-87. [42] MANAHAN M P,ARGON A S,HARLING O K. The development of a miniaturized disk bend test for the determination of postirradiation mechanical Properties[J].Journal of Nuclear Materials,1981,104:1545-1550. [43] MAO Xinyuan, TAKAHASHI H. Development of a further-miniaturized specimen of 3 mm diameter for tem disk(ø3 mm)small punch tests[J]. Journal of Nuclear Materials,1987,150(1):42-52. [44] KAMEDA J, MAO X. Hardening and intergranular embrittlement in neutron-irradiated ferritic alloys[J].Materials Science and Engineering:A,1989,112:143-149. [45] PENG Jian,LI Kaishang,DAI Qiao,et al. Estimation of mechanical strength for pre-strained 316l austenitic stainless steel by small punch test[J]. Vacuum,2019,160:37-53. [46] NIX W D,GAO Huajian. Indentation size effects in crystalline materials:A law for strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids,1998,46(3):411-425. [47] OLIVER W C,PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology[J]. Journal of Materials Research,2004,19(1):3-20. [48] JOHNSON K. The correlation of indentation experiments[J]. Journal of the Mechanics and Physics of Solids,1970,18(2):115-126. [49] DAO M, CHOLLACOOP N, VLIET K, et al.Computational modeling of the forward and reverse problems in instrumented sharp indentation[J]. Acta Materialia,2001,49(19):3899-3918. [50] HAGGAG F Y M,LUCAS G E. Determination of Lüders strains and flow properties in steels from hardness/microhardness tests[J].Metallurgical Transactions A,1983,14(8):1607-1613. [51] LEMAITRE J, DESMORAT R. Engineering damage mechanics:Ductile,creep,fatigue and brittle faliures[M].Berlin:Springer,2005. [52] CHATZIIOANNOU K,KARAMANOS S A,HUANG Yuner. Coupled numerical simulation of low-cycle fatigue damage in metal components[J]. Engineering Structures,2021,229:111536. [53] COFFIN J L F. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the American Society of Mechanical Engineers,1954,76(6):931-949. [54] MANSON S S. Behavior of materials under conditions of thermal stress[J]. Nasa Tnd,1954,7(s3-4):661-665. [55] OSTERGREN W. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue[J].Journal of Testing and Evaluation,1976,4(5):327-339. [56] ELLYIN F,KUJAWSKI D. Plastic strain energy in fatigue failure[J]. ASME. J. Pressure Vessel Technol,1984,106(4):342-347. [57] TAKAHASHI Y,SHIBAMOTO H,INOUE K. Study on creep-fatigue life prediction methods for low-carbon nitrogen-controlled 316 Stainless steel(316fr)[J]. Nuclear Engineering and Design,2008,238(2):322-335. [58] COFFIN L J. Prediction parameters and their application to high temperature low-cycle fatigue[C]//Proceedings of Second International Conference on Fracture,London,UK,1969,56:1-12. [59] CHARKALUK E,CONSTANTINESCU A. An energetic approach in thermomechanical fatigue for silicon molybdenum cast iron[J]. Materials at High Temperatures,2000,17(3):373-380. [60] CHARKALUK E, BIGNONNET A,CONSTANTINESCU A, et al. Fatigue design of structures under thermomechanical loadings[J]. Fatigue&Fracture of Engineering Materials&Structures,2002,25(12):1199-1206. [61] SKELTON R,REES C,WEBSTER G. Energy damage summation methods for crack initiation and growth during block loading in high temperature low-cycle fatigue[J].Fatigue&Fracture of Engineering Materials&Structures,1996,19(2-3):287-297. [62] SKELTON R,LOVEDAY M. A re-interpretation of the Bcr/Vamas low cycle fatigue intercomparison programme using an energy criterion[J]. Materials at High Temperatures,1997,14(1):53-68. [63] KORSUNSKY A M,DINI D,DUNNE F P,et al.Comparative assessment of dissipated energy and other fatigue criteria[J]. International Journal of Fatigue,2007,29(9-11):1990-1995. [64] ASME. Section III. Division I,Sub-Section Nb&Nh:[S].New York:ASME,2001. [65] R5. Assessment procedure for the high temperature response of structures[S]. Gloucester:British Energy,2003. [66] SKELTON R. The energy density exhaustion method for assessing the creep-fatigue lives of specimens and components[J]. Materials at High Temperatures,2013,30(3):183-201. [67] VENKATARAMANI G, KIRANE K, GHOSH S.Microstructural parameters affecting creep induced load shedding in Ti-6242 by a size dependent crystal plasticity FE model[J]. International Journal of Plasticity,2008,24(3):428-454. [68] LI Kaishang,WANG Runzi,YUAN Guangjian,et al. A crystal plasticity-based approach for creep-fatigue life prediction and damage evaluation in a Nickel-based superalloy[J]. International Journal of Fatigue,2021,143:106031. [69] ANTOLOVICH S D,BAUR R,LIU S. A mechanistically based model for high temperature LCF of Ni base superalloys[J]. Superalloys,1980:605-613. [70] ANTOLOVICH S D,LIU S,BAUR R. Low cycle fatigue behavior of René80 at elevated temperature[J].Metallurgical Transactions A,1981,12(3):473-481. [71] SEHITOGLU H. Thermo-mechanical fatigue life prediction methods[M]. Francisco:ASTM International,1992. [72] BOISMIER D, SEHITOGLU H. Thermo-mechanical fatigue of Mar-M247:Part 1-Experiments[J]. Journal of Engineering Materials and Technology,1990,112(1):68-79. [73] SEHITOGLU H, BOISMIER D. Thermo-mechanical fatigue of Mar-M247:Part 2-Life prediction[J]. Journal of Engineering Materials and Technology,1990,112(1):80-89. [74] WANG Runzi,ZHU Xuming,ZHANG Xiancheng,et al.A generalized strain energy density exhaustion model allowing for compressive hold effect[J]. International Journal of Fatigue,2017,104:61-71. [75] POON C,HOEPPNER D. The effect of environment on the mechanism of fretting fatigue[J]. Wear,1979,52(1):175-191. [76] LINDLEY T,MCINTYRE P,TRANT P. Fatigue-crack initiation at corrosion pits[J]. Metals Technology,1982,9(1):135-142. [77] KONDO T. Japanese contributions to fields of predicting and combating environmentally assisted cracking(EAC)of steels in lwr water[J]. Journal of Nuclear Science and Technology,1989,26(1):126-131. [78] HU Ping,MENG Qingchun,HU Weiping,et al. A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy[J]. Corrosion Science,2016,113:78-90. [79] HU W P,SHEN Q A,ZHANG M,et al. Corrosion-fatigue life prediction for 2024-T62 aluminum alloy using damage mechanics-based approach[J]. International Journal of Damage Mechanics, 2012, 21(8):1245-1266. [80] ZHANG Jie,HERTELÉS,DE WAELE W. A non-linear model for corrosion fatigue lifetime based on continuum damage mechanics[C]//MATEC Web of Conferences. EDP Sciences,2018,165:03003. [81] CUI Chuanjie,CHEN Airong,MA Rujin. An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment[J]. International Journal of Fatigue,2020,135:105540. [82] EFTEKHARI M,FATEMI A. Creep-fatigue interaction and thermo-mechanical fatigue behaviors of thermoplastics and their composites[J]. International Journal of Fatigue,2016,91:136-148. [83] CHANG Le, LI Xin, WEN Jianbin, et al.Thermal-mechanical fatigue behaviour and life prediction of P92 steel,including average temperature and dwell effects[J]. Journal of Materials Research and Technology,2020,9(1):819-837. [84] LI Shaolin, YANG Xiaoguang, QI Hongyu.High-temperature hot-corrosion effects on the creep-fatigue behavior of a directionally solidified Nickel-based superalloy:Mechanism and lifetime prediction[J]. International Journal of Damage Mechanics,2020,29(5):798-809. [85] ZHAO Gaole,QI Hongyu,LI Shaolin,et al. Effects of tensile load hold time on the fatigue and corrosion-fatigue behavior of turbine blade materials[J]. International Journal of Fatigue,2021,152:106448. [86] TAFLANIDIS A A,CHEUNG S H. Stochastic sampling using moving least squares response surface approximations[J]. Probabilistic Engineering Mechanics,2012,28:216-224. [87] JIANG Chen,YAN Yifang,WANG Dapeng,et al. Global and local kriging limit state approximation for time-dependent reliability-based design optimization through wrong-classification probability[J]. Reliability Engineering&System Safety,2021,208:107431. [88] BOURINET J M. Rare-event probability estimation with adaptive support vector regression surrogates[J]. Reliability Engineering&System Safety,2016,150:210-221. [89] LU Jiawei, WANG Qiong, ZHANG Zhuxiu, et al.Surrogate modeling-based multi-objective optimization for the integrated distillation processes[J]. Chemical Engineering and Processing-Process Intensification,2021,159:108224. [90] CHOJACZYK A A,TEIXEIRA A P,NEVES L C,et al. Review and application of artificial neural networks models in reliability analysis of steel structures[J].Structural Safety,2015,52:78-89. [91] LI Xueqin, SONG Lukai,BAI Guangchen. Recent advances in reliability analysis of aeroengine rotor system:A review[J]. International Journal of Structural Integrity,2022,13(1):1-29. [92] GU Hanghang,WANG Runzi,ZHU Shunpeng,et al.Machine learning assisted probabilistic creep-fatigue damage assessment[J]. International Journal of Fatigue,2022,156:106677. [93] URE J, CHEN Haofeng, TIPPING D. Integrated structural analysis tool using the linear matching method Part 1-software development[J]. International Journal of Pressure Vessels and Piping,2014,120-121:141-151. [94] NESLÁDEK M,ŠPANIEL M. An abaqus plugin for fatigue predictions[J]. Advances in Engineering Software,2017,103:1-11. [95] MALEKAN M,KHOSRAVI A,ST-PIERRE L. An abaqus Plug-in to simulate fatigue crack growth[J].Engineering with Computers,2022,38(4):2991-3005. [96] KIM N H,A N D,CHOI J H. Prognostics and health management of engineering systems[M]. Switzerland:Springer International Publishing,2017. [97] TSAI Y T,WANG Kuoshong,TENG H Y. Optimizing preventive maintenance for mechanical components using genetic algorithms[J]. Reliability Engineering&System Safety,2001,74(1):89-97. [98] ZHU Shunpeng, LIU Qiang, LEI Qiang, et al.Probabilistic fatigue life prediction and reliability assessment of a high pressure turbine disc considering load variations[J]. International Journal of Damage Mechanics,2017,27(10):1569-1588. [99] JARDINE A K,LIN D,BANJEVIC D. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical Systems and Signal Processing,2006,20(7):1483-1510. [100] LE SON K,FOULADIRAD M,BARROS A,et al.Remaining useful life estimation based on stochastic deterioration models:A comparative study[J]. Reliability Engineering&System Safety,2013,112:165-175. [101] QU S,AN X H,YANG H J,et al. Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing[J]. Acta Materialia,2009,57(5):1586-1601. [102] YANG Xiaofeng,XI Yongzhi,HE Chenyun,et al.Chemical short-range order strengthening mechanism in cocrni medium-entropy alloy under nanoindentation[J].Scripta Materialia,2022,209:114364. [103] VENKATARAMAN A, SANGID M D. A crystal plasticity model with an atomistically informed description of grain boundary sliding for improved predictions of deformation fields[J]. Computational Materials Science,2021,197:110589. [104] ZHAO Youle,SONG Qinghua,JI Hansong,et al.Multi-scale modeling method for polycrystalline materials considering grain boundary misorientation angle[J]. Materials&Design,2022,221:110998. [105] LI Dongfeng,BARRETT R A,O'DONOGHUE P E,et al. A multi-scale srystal plasticity model for cyclic plasticity and low-cycle fatigue in a precipitate-strengthened steel at elevated temperature[J].Journal of the Mechanics and Physics of Solids,2017,101:44-62. [106] LI Kaishang,CHENG Lvyi,XU Yilun,et al. A dual-scale modelling approach for creep-fatigue crack initiation life prediction of holed structure in a Nickel-based superalloy[J].International Journal of Fatigue,2022,154:106522. [107] MARINESCU G, SELL M, EHRSAM A, et al.Experimental investigation into thermal behavior of steam turbine components:Part 3-startup and the impact on LCF life[C]//Turbo Expo:Power for Land,Sea,and Air. San Antonio,Texas,USA:American Society of Mechanical Engineers,2013,55164:V03CT14A006. [108] BANASZKIEWICZ M. On-line monitoring and control of thermal stresses in steam turbine rotors[J]. Applied Thermal Engineering,2016,94:763-776. [109] WANG Jianmei,CAI Kai,HU Niansu,et al. Steam turbine rotor thermal stress on-line monitoring based on XDPS[C]//2008 International Conference on Condition Monitoring and Diagnosis. Beijing:IEEE, 2008:180-183. [110] 赵翔,茹东恒,王鹏,等.基于NARX神经网络方法的汽轮机转子关键部位应力预测[J].应用数学和力学,2021,42:771-784.ZHAO Xiang,RU Dongheng,WANG Peng,et al. On the stress prediction of key components in steam turbine rotors based on the NARX neural network[J]. Applied Mathematics and Mechanics,2021,42(8):771-784. [111] ZHAO Xiang,RU Dongheng,WANG Peng,et al.Fatigue life prediction of a supercritical steam turbine rotor based on neural networks[J]. Engineering Failure Analysis,2021,127:105435. [112] CHENG Lvyi, WANG Runzi, WANG Ji, et al.Cycle-dependent creep-fatigue deformation and life predictions in a Nickel-based superalloy at elevated temperature[J]. International Journal of Mechanical Sciences,2021,206:106628. [113] WANG Runzi,GUO Sujuan,CHEN Haofeng,et al.Multi-axial creep-fatigue life prediction considering history-dependent damage evolution:A new numerical procedure and experimental validation[J]. Journal of the Mechanics and Physics of Solids,2019,131:313-336. [114] TOPPER T,WETZEL R,MORROW J. Neuber's rule applied to fatigue of notched specimens[R]. Urbana:University of Illinois,1967. [115] MOLSKI K,GLINKA G. A method of elastic-plastic stress and strain calculation at a notch root[J]. Materials Science and Engineering,1981,50(1):93-100. [116] KIM S,CHOI J H,KIM N H. Data-driven prognostics with low-fidelity physical information for digital twin:Physics-informed neural network[J]. Structural and Multidisciplinary Optimization,2022,65(9):255. [117] SI Xiaosheng. An adaptive prognostic approach via nonlinear degradation modeling:Application to battery data[J]. IEEE Transactions on Industrial Electronics,2015,62(8):5082-5096. [118] SI Xiaosheng,LI Tianmei,ZHANG Jianxun,et al.Nonlinear degradation modeling and prognostics:A box-cox transformation perspective[J]. Reliability Engineering&System Safety,2022,217:108120. [119] SI Xiaosheng, ZHANG Zhengxin, HU Changhua.Data-driven remaining useful life prognosis techniques[M]. Beijing:National Defense Industry Press and Springer-Verlag GmbH,2017. [120] SI Xiaosheng,LI Tianmei,ZHANG Qi. A general stochastic degradation modeling approach for prognostics of degrading systems with surviving and uncertain measurements[J]. IEEE Transactions on Reliability,2019,68(3):1080-1100. [121] 任子强,司小胜,胡昌华,等.融合多传感器数据的发动机剩余寿命预测方法[J].航空学报,2019,40(12):129-140.REN Ziqiang,SI Xiaosheng,HU Changhua,et al.Remaining useful life prediction method for engine combining multi-sensors data[J]. Acta Aeronautica et Astronautica Sinica,2019,40(12):129-140. [122] LEI Yaguo,LI Naipeng,GUO Liang,et al. Machinery health prognostics:A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing,2018,104:799-834. [123] WEN Yuxin,WU Jianguo,DAS D,et al. Degradation modeling and RUL prediction using wiener process subject to multiple change points and unit heterogeneity[J].Reliability Engineering&System Safety,2018,176:113-124. [124] WANG Xiaolin, BALAKRISHNAN N, GUO Bo.Residual life estimation based on a generalized wiener degradation process[J]. Reliability Engineering&System Safety,2014,124:13-23. [125] GAO Hongda,CUI Lirong,KONG Dejing. Reliability analysis for a wiener degradation process model under changing failure thresholds[J]. Reliability Engineering&System Safety,2018,171:1-8. [126] CHOLETTE M E,YU Hongyang,BORGHESANI P,et al. Degradation modeling and condition-based maintenance of boiler heat exchangers using gamma processes[J]. Reliability Engineering&System Safety,2019,183:184-196. [127] DONG Qinglai,CUI Lirong. A study on stochastic degradation process models under different types of failure thresholds[J]. Reliability Engineering&System Safety,2019,181:202-212. [128] LEI Yaiguo, LI Naipeng, GONTARZ S, et al. A model-based method for remaining useful life prediction of machinery[J]. IEEE Transactions on Reliability,2016,65(3):1314-1326. [129] 陈一明,姜涛,刘宇.选择性维护决策的研究进展与挑战[J].运筹学学报,2019,23(3):27-46.CHEN Yiming,JIANG Tao,LIU Yu. Progress and challenges in selective maintenance decision making[J].Operations Research Transactions, 2019, 23(3):27-46. |
[1] | 石健, 刘冬, 王少萍. 基于数字孪生的机电液系统PHM关键技术综述[J]. 机械工程学报, 2024, 60(4): 66-81. |
[2] | 张显程, 谷行行, 刘宇, 王润梓, 宋鲁凯, 谢里阳, 赵丙峰, 夏侯唐凡, 李勇, 孙莉, 温建锋, 涂善东. 基于工程损伤理论的高温装备可靠性评估与运维管理[J]. 机械工程学报, 2024, 60(13): 154-172. |
[3] | 王诗彬, 王世傲, 陈雪峰, 黄海, 安波涛, 赵志斌, 刘永泉, 李应红. 可解释性智能监测诊断网络构造及航空发动机整机试车与中介轴承诊断应用[J]. 机械工程学报, 2024, 60(12): 90-106. |
[4] | 沈功田, 金灿华, 张君娇, 胡斌, 刘渊, 王强. 无损云检测技术研究及仪器系统开发[J]. 机械工程学报, 2023, 59(4): 1-9. |
[5] | 葛雪峰, 姜佳宝, 赵耀. 金属化膜电容器电热仿真分析*[J]. 电气工程学报, 2023, 18(3): 224-231. |
[6] | 信苗苗, 曹凤, 江铭炎, 厉相宝, 李东阳, 张明强, 雷腾飞, 袁东风. SDU-QIT立铣刀磨损试验数据集[J]. 机械工程学报, 2022, 58(9): 166-171. |
[7] | 李博文, 贾祥, 赵骞, 郭波. 面向产品可靠性评估的退化和寿命数据分步融合方法[J]. 机械工程学报, 2022, 58(16): 430-440. |
[8] | 王嘉, 张云安, 韩旭. 基于互依关系的退化与随机冲击建模研究[J]. 机械工程学报, 2021, 57(2): 230-238. |
[9] | 贾俊, 胡晓松, 邓忠伟, 徐华池, 肖伟, 韩锋. 数据驱动的锂离子电池健康状态综合评分及异常电池筛选[J]. 机械工程学报, 2021, 57(14): 141-149,159. |
[10] | 魏发远, 谢朝阳, 孙昌璞, 康锐. 长贮装备性能退化评估刍议[J]. 机械工程学报, 2020, 56(16): 262-272. |
[11] | 沈功田, 刘渊, 张君娇, 胡斌. 在役大型游乐设施健康评价方法研究[J]. 机械工程学报, 2020, 56(10): 1-11. |
[12] | 李海洋, 谢里阳, 刘杰, 袁延凯, 姚常辉, 姜春龙. 无失效数据场合智能换刀机器人中轴承的可靠性评估[J]. 机械工程学报, 2019, 55(2): 186-194. |
[13] | 王嘉, 张露予, 陶友瑞, 李志刚. 基于时间和当前状态的退化与冲击模型[J]. 机械工程学报, 2019, 55(18): 180-186. |
[14] | 雷亚国, 韩天宇, 王彪, 李乃鹏, 闫涛, 杨军. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55(16): 1-6. |
[15] | 沈功田, 刘渊. 大型机械系统的健康管理理论研究及应用设想*[J]. 机械工程学报, 2017, 53(6): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||