机械工程学报 ›› 2019, Vol. 55 ›› Issue (4): 189-206.doi: 10.3901/JME.2019.04.189
汤勇1,2, 刘辉龙1,2, 陆龙生1,2, 谢颖熙1,2, 袁伟1,2, 万珍平1,2, 李宗涛1,2, 丁鑫锐1,2
收稿日期:
2018-06-03
修回日期:
2018-11-30
出版日期:
2019-02-20
发布日期:
2019-02-20
通讯作者:
谢颖熙(通信作者),男,1989年出生,博士,助理研究员。主要研究方向为柔性储能器件微纳制造。Email:xieyingxi@scut.edu.cn
作者简介:
汤勇,男,1962年出生,博士,教授,博士研究生导师。主要研究方向为表面功能结构加工、储能器件微纳制造等。Email:ytang@scut.edu.cn;刘辉龙,男,1991年出生,博士研究生。主要研究方向为柔性储能器件激光加工制造。Email:huiloongliu@gmail.com;陆龙生,男,1981年出生,博士,教授,博士研究生导师。主要研究方向为表面功能结构制造。Email:meluls@scut.edu.cn
基金资助:
TANG Yong1,2, LIU Huilong1,2, LU Longsheng1,2, XIE Yingxi1,2, YUAN Wei1,2, WAN Zhenping1,2, LI Zongtao1,2, DING Xinrui1,2
Received:
2018-06-03
Revised:
2018-11-30
Online:
2019-02-20
Published:
2019-02-20
摘要: 可穿戴和便携式电子设备朝"轻薄化"与"小型化"方向的快速发展,极大地刺激了现代社会对高能量/功率密度、轻量便携化、柔性化储能器件的强烈需求。平面型微超级电容器(In-plane micro-supercapacitors,IPMSC)作为一种新型的微电源储能器件,以其超薄厚度、高功率密度和长循环寿命等优点被认为是集成电子器件重要的储能器件而备受关注。但是,随着IPMSC加工技术不断朝着高效、高精度和低成本等方向发展,常用的加工技术已难以满足其要求,操作更易、可扩展性更强、精度较高和成本更低的激光加工技术成为了目前IPMSC加工技术的研究热点。基于此,对不同类型IPMSC的工作原理及其电化学性能进行了总结,从激光还原、激光诱导、激光刻蚀和激光烧结四方面着手详细介绍了激光加工IPMSC的类型及加工工艺,重点综述了目前国内外关于激光加工IPMSC在机械性能和电化学性能等方面的研究进展情况,概括了用于IPMSC电解质的特性及其挑战,并在综合探讨激光加工IPMSC所面临的技术挑战基础上,对其在可穿戴和便携式电子设备中的应用前景进行了展望。
中图分类号:
汤勇, 刘辉龙, 陆龙生, 谢颖熙, 袁伟, 万珍平, 李宗涛, 丁鑫锐. 激光加工平面型微超级电容器的研究进展与发展趋势[J]. 机械工程学报, 2019, 55(4): 189-206.
TANG Yong, LIU Huilong, LU Longsheng, XIE Yingxi, YUAN Wei, WAN Zhenping, LI Zongtao, DING Xinrui. Research Progress and Perspective Trend of Laser-machined In-plane Micro-supercapacitors[J]. Journal of Mechanical Engineering, 2019, 55(4): 189-206.
[1] YU H,WU J,FAN L,et al. Application of a novel redox-active electrolyte in MnO2-based supercapacitors[J]. Science China Chemistry,2012,55(7):1319-1324. [2] SEN W,SHUANGHAO Z,ZHONG-SHUAI W,et al. Recent advances in graphene-based planar micro-supercapacitors[J]. SCIENTIA SINICA Chimica,2016,46(8):732-744. [3] CONWAY B E. Electrochemical supercapacitors:scientific fundamentals and technological applications[M]. New York:Springer Science & Business Media,1999. [4] ZHANG L L,ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. [5] LU M. Supercapacitors:materials,systems,and applications[M]. Hoboken:John Wiley & Sons,2013. [6] BONACCORSO F,COLOMBO L,YU G,et al. 2D materials. Graphene,related two-dimensional crystals,and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):1246501. [7] QI D,LIU Y,LIU Z,et al. Design of architectures and materials in in-plane micro-supercapacitors:current status and future challenges[J]. Advanced Materials,2017,29(5):1602802. [8] HUANG P,LETHIEN C,PINAUD S,et al. On-chip and freestanding elastic carbon films for micro-supercapacitors[J]. Science,2016,351(6274):691-695. [9] GU S,LOU Z,LI L,et al. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photo detecting applications[J]. Nano Research,2016,9(2):424-434. [10] LANG X,HIRATA A,FUJITA T,et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology,2011,6(4):232-236. [11] SHEN C,XIE Y,SANGHADASA M,et al. Ultrathin coaxial fiber supercapacitors achieving high energy and power densities[J]. ACS Applied Materials & Interfaces,2017,9(45):39391-39398. [12] SNOOK G A,KAO P,BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources,2011,196(1):1-12. [13] PENG C,ZHANG S,JEWELL D,et al. Carbon nanotube and conducting polymer composites for supercapacitors[J]. Progress in Natural Science,2008,18(7):777-788. [14] ACERCE M,VOIRY D,CHHOWALLA M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology,2015,10(4):313-318. [15] BRITNELL L,RIBEIRO R M,ECKMANN A,et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science,2013,340(6138):1311-1314. [16] LUKATSKAYA M R,MASHTALIR O,REN C E,et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science,2013,341(6153):1502-1505. [17] KAMMOUN M,BERG S,ARDEBILI H. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte[J]. Nanoscale,2015,7(41):17516-17522. [18] ARMSTRONG E,MCNULTY D,GEANEY H,et al. Electrodeposited structurally stable V2O5 inverse opal networks as high performance thin film lithium batteries[J]. ACS Applied Materials & Interfaces,2015,7(48):27006-27015. [19] GLENNEBERG J,ANDRE F,BARDENHAGEN I,et al. A concept for direct deposition of thin film batteries on flexible polymer substrate[J]. Journal of Power Sources,2016,324:722-728. [20] YOON M,LEE S,LEE D,et al. All-solid-state thin film battery based on well-aligned slanted LiCoO2 nanowires fabricated by glancing angle deposition[J]. Applied Surface Science,2017,412:537-544. [21] GAO W,SINGH N,SONG L,et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology,2011,6(8):496-500. [22] EL-KADY M F,KANER R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications,2013,4:1-9. [23] SHEN D,ZOU G,LIU L,et al. Scalable high-performance ultraminiature graphene micro-supercapacitors by a hybrid technique combining direct writing and controllable microdroplet transfer[J]. ACS Applied Materials & Interfaces,2018,10(6):5404-5412. [24] XIE B,WANG Y,LAI W,et al. Laser-processed graphene based micro-supercapacitors for ultrathin,rollable,compact and designable energy storage components[J]. Nano Energy,2016,26:276-285. [25] LIN J,PENG Z,LIU Y,et al. Laser-Induced porous graphene films from commercial polymers[J]. Nature Communications,2014,5:1-8. [26] LEE J,SEOK J Y,SON S,et al. High-energy,flexible micro-supercapacitor by one-step laser fabrication of self-generated nanoporous metal/oxide electrode[J]. Journal of Materials Chemistry A,2017,5(47):24585-24593. [27] LIU Y,WENG B,XU Q,et al. Facile Fabrication of flexible microsupercapacitor with high energy density[J]. Advanced Materials Technologies,2016,1(9):1600166. [28] ZHANG L,DEARMOND D,ALVAREZ N T,et al. Flexible micro-supercapacitor based on graphene with 3d structure[J]. Small,2017,13(10):1603114. [29] HUANG H C,CHUNG C J,HSIEH C T,et al. Laser fabrication of all-solid-state microsupercapacitors with ultrahigh energy and power based on hierarchical pore carbon[J]. Nano Energy,2016,21:90-105. [30] CAO L,YANG S,GAO W,et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films[J]. Small,2013,9(17):2905-2910. [31] LIU Y H,XU J L,GAO X,et al. Freestanding transparent metallic network based ultrathin,foldable and designable supercapacitors[J]. Energy & Environmental Science,2017,10(12):2534-2543. [32] EL-KADY M F,IHNS M,LI M,et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage[J]. Proceedings of the National Academy of Sciences,2015,112(14):4233-4238. [33] HWANG J Y,EL-KADY M F,LI M,et al. Boosting the capacitance and voltage of aqueous supercapacitors via redox charge contribution from both electrode and electrolyte[J]. Nano Today,2017,15:15-25. [34] MOOSAVIFARD S E,SHAMSI J,ALTAFI M K,et al. All-solid state,flexible,high-energy integrated hybrid micro-supercapacitors based on 3D LSG/CoNi2S4 nanosheets[J]. Chemical Communications,2016,52(89):13140-13143. [35] LI L,ZHANG J,PENG Z,et al. High-performance pseudocapacitivemicrosupercapacitors from laser-induced graphene[J]. Advanced Materials,2016,28(5):838-845. [36] ZHANG L F,TANG J,LIU S Y,et al. A laser irradiation synthesis of strongly-coupled VOx-reduced graphene oxide composites as enhanced performance supercapacitor electrodes[J]. Materials Today Energy,2017,5:222-229. [37] PEIGNEY A,LAURENT C,FLAHAUT E,et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon,2001,39(4):507-514. [38] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. [39] LOSURDO M,GIANGREGORIO M M,CAPEZZUTO P,et al. Graphene CVD growth on copper and nickel:role of hydrogen in kinetics and structure[J]. Physical Chemistry Chemical Physics,2011,13(46):20836-20843. [40] WEI Z,WANG D,KIM S,et al. Nanoscale tunable reduction of graphene oxide for graphene electronics[J]. Science,2010,328(5984):1373-1376. [41] EL-KADY M F,STRONG V,DUBIN S,et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science,2012,335(6074):1326-1330. [42] WEN F,HAO C,XIANG J,et al. Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter[J]. Carbon,2014,75:236-243. [43] TIAN H,YANG Y,XIE D,et al. Wafer-scale integration of graphene-based electronic,optoelectronic and electroacoustic devices[J]. Scientific Reports,2014,4:3598. [44] LI R Z,PENG R,KIHM K D,et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes[J]. Energy & Environmental Science,2016,9(4):1458-1467. [45] WANG G X,BABAAHMADI V,HE N F,et al. Wearable supercapacitors on polyethylene terephthalate fabrics with good wash fastness and high flexibility[J]. Journal of Power Sources,2017,367:34-41. [46] HWANG J Y,EL-KADY M F,WANG Y,et al. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage[J]. Nano Energy,2015,18:57-70. [47] DARVISHI S,CUBAUD T,LONGTIN J P. Ultrafast laser machining of tapered microchannels in glass and PDMS[J]. Optics and Lasers in Engineering,2012,50(2):210-214. [48] LUO S,HOANG P T,LIU T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays[J]. Carbon,2016,96:522-531. [49] HWANG D J,KUK S,WANG Z,et al. Laser scribing of CIGS thin-film solar cell on flexible substrate[J]. Applied Physics A,2016,123(1):55. [50] DU Q,AI J,QIN Z,et al. Fabrication of superhydrophobic/superhydrophilic patterns on polyimide surface by ultraviolet laser direct texturing[J]. Journal of Materials Processing Technology,2018,251:188-196. [51] TILIAKOS A,CEAUS C,IORDACHE S M,et al. Morphic transitions of nanocarbons via laser pyrolysis of polyimide films[J]. Journal of Analytical and Applied Pyrolysis,2016,121:275-286. [52] MORACZEWSKI K,MRóZ W,BUDNER B,et al. Laser modification of polylactide surface layer prior autocatalytic metallization[J]. Surface and Coatings Technology,2016,304:68-75. [53] 肖荣诗,张寰臻,黄婷. 飞秒激光加工最新研究进展[J]. 机械工程学报,2016,52(17):176-186. XIAO Rongshi,ZHANG Huanzhen,HUANG Ting. Recent progress in femtosecond pulsed laser processing research[J]. Journal of Mechanical Engineering,2016,52(17):176-186. [54] 季凌飞,凌晨,李秋瑞,等. 皮秒激光工程应用研究现状与发展分析[J]. 机械工程学报,2014,50(5):115-126. JI Lingfei,LING Chen,LI Qiurui,et al.Research progress and development of industrial application ofpicosecond laser processing[J]. Journal of Mechanical Engineering,2014,50(5):115-126. [55] PENG Z,LIN J,YE R,et al. Flexible and stackable laser-Induced graphene supercapacitors[J]. ACS Applied Materials & Interfaces,2015,7(5):3414-3419. [56] PENG Z,YE R,MANN J A,et al. Flexible boron-doped laser-induced graphene microsupercapacitors[J]. ACS Nano,2015,9(6):5868-5875. [57] CLERICI F,FONTANA M,BIANCO S,et al. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2016,8(16):10459-10465. [58] ANTANAVICIUTE I,SIMATONIS L,ULCINAS O,et al. Femtosecond laser micro-machined polyimide films for cell scaffold applications[J]. Journal of Tissue Engineering and Regenerative Medicine,2018,12(2):760-773. [59] GUO X D,DAI Y,GONG M,et al. Changes in wetting and contact charge transfer by femtosecond laser-ablation of polyimide[J]. Applied Surface Science,2015,349:952-956. [60] IN J B,HSIA B,YOO J-H,et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide[J]. Carbon,2015,83:144-151. [61] WANG S,YU Y,LI R,et al. High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets[J]. ElectrochimicaActa,2017,241:153-161. [62] WANG S,YU Y,MA D,et al. High performance hybrid supercapacitors on flexible polyimide sheets using femtosecond laser 3D writing[J]. Journal of Laser Applications,2017,29(2):022203. [63] CAI J,LV C,WATANABE A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment[J]. Journal of Materials Chemistry A,2016,4(5):1671-1679. [64] CAI J,WATANABE A. Flexible carbon micro-supercapacitors prepared by direct cw-laser writing[C]//Conference on Laser-Based Micro-and Nanoprocessing X:International Society for Optics and Photonics,February 16-18,2016,San Francisco,CA,USA. San Diego:SPIE,2016,9736:1-8. [65] CAI J,LV C,WATANABE A. Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetectionsystem[J]. Nano Energy,2016,30:790-800. [66] CAI J,LV C,WATANABE A. High-performance all-solid-state flexible carbon/TiO2 micro-supercapacitors with photo-rechargeable capability[J]. RSC Advances,2017,7(1):415-422. [67] LUO J,FAN F R,JIANG T,et al. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit[J]. Nano Research,2015,8(12):3934-3943. [68] CAI J,LV C,WATANABE A. Laser direct writing and selective metallization of metallic circuits for integrated wireless devices[J]. ACS Applied Materials & Interfaces,2018,10(1):915-924. [69] LAMBERTI A,CLERICI F,FONTANA M,et al. A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate[J]. Advanced Energy Materials,2016,6(10):1600050. [70] SONG W,ZHU J,GAN B,et al. Flexible,stretchable,and transparent planar microsupercapacitors based on 3D porous laser-induced graphene[J]. Small,2018,14(1):1702249. [71] NIU Z,ZHANG L,LIU L,et al. All-solid-state flexible ultrathin micro-supercapacitors based on graphene[J]. Advanced Materials,2013,25(29):4035-4042. [72] BEIDAGHI M,WANG C. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance[J]. Advanced Functional Materials,2012,22(21):4501-4510. [73] KIM S-K,KOO H-J,LEE A,et al. Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors[J]. Advanced Materials,2014,26(30):5108-5112. [74] SONG B,LI L,LIN Z,et al. Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities[J]. Nano Energy,2015,16:470-478. [75] WU Z S,PARVEZ K,FENG X,et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nature Communications,2013,4:1-8. [76] LIU L,YE D,YU Y,et al. Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching[J]. Carbon,2017,111:121-127. [77] YAN H,CHEN Z,ZHENG Y,et al. A high-mobility electron-transporting polymer for printed transistors[J]. Nature,2009,457(7230):679. [78] LEE H M,LEE H B,JUNG D S,et al. Solution processed aluminum paper for flexible electronics[J]. Langmuir,2012,28(36):13127-13135. [79] CHEN P,CHEN H,QIU J,et al. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates[J]. Nano Research,2010,3(8):594-603. [80] SHI L,WANG Y,ZOU P,et al. Laser processed micro-supercapacitors based on carbon nanotubes/manganese dioxide nanosheets composite with excellent electrochemical performance and aesthetic property[J]. Chinese Chemical Letters,2018,29(4):592-595. [81] SONG Y,CHEN X X,ZHANG J X,et al. Freestanding micro-supercapacitor with interdigital electrodes for low-power electronic systems[J]. Journal of Microelectromechanical Systems,2017,26(5):1055-1062. [82] 刘之景,刘晨. 光刻与等离子体刻蚀技术[J]. 物理,1999,28(7):45-49. LIU Zhijing,LIU Chen. Lithography and plasma etching technology[J]. Physics,1999,28(7):45-49. [83] YUN X,XIONG Z,TU L,et al. Hierarchical porous graphene film:An ideal material for laser-carving fabrication of flexible micro-supercapacitors with high specific capacitance[J]. Carbon,2017,125:308-317. [84] SHAO Y,LI J,LI Y,et al. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films[J]. Materials Horizons,2017,4(6):1145-1150. [85] PAENG D,LEE D,YEO J,et al. Laser-induced reductive sintering of nickel oxide nanoparticles under ambient conditions[J]. The Journal of Physical Chemistry C,2015,119(11):6363-6372. [86] PERELAER J,DE GANS B J,SCHUBERT U S. Ink-jet printing and microwave sintering of conductive silver tracks[J]. Advanced Materials,2006,18(16):2101-2104. [87] HONG S,YEO J,KIM G,et al. Nonvacuum,maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink[J]. ACS Nano,2013,7(6):5024-5031. [88] CHUNG J,KO S,BIERI N R,et al. Conductor microstructures by laser curing of printed gold nanoparticle ink[J]. Applied Physics Letters,2004,84(5):801-803. [89] KO S H,PAN H,GRIGOROPOULOS C P,et al. Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles[J]. Applied Physics Letters,2007,90(14):141103. [90] YEO J,HONG S,LEE D,et al. Next generation non-vacuum,maskless,low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics[J]. PLoS One,2012,7(8):e42315. [91] KO S H,CHUNG J,PAN H,et al. Fabrication of ultilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing[J]. Sensors and Actuators A:Physical,2007,134(1):161-168. [92] CHENG K,YANG M H,CHIU W WW,et al. Ink-jet printing,self-assembled polyelectrolytes,and electroless plating:Low cost fabrication of circuits on a flexible substrate at room temperature[J]. Macromolecular Rapid Communications,2005,26(4):247-264. [93] CHIOLERIO A,MACCIONI G,MARTINO P,et al. Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for flexible electronics[J]. Microelectronic Engineering,2011,88(8):2481-2483. [94] WATANABE A,QIN G,CAI J. Laser direct writing on copper nanoparticle film by lightscribetechnique[J]. Journal of Photopolymer Science and Technology,2015,28(1):99-102. [95] CAI J,WATANABE A,LV C. Laser direct writing of carbon/Au composite electrodes for high-performance micro-supercapacitors[C]//Conference on Laser-Based Micro-and Nanoprocessing XI:International Society for Optics and Photonics,January 31-February 02,2017,San Francisco,CA,USA. San Diego:SPIE,2017,10092:1-8. [96] YU J H,RHO Y,KANG H,et al. Electrical behavior of laser-sintered Cu based metal-organic decomposition ink in air environment and application as current collectors in supercapacitor[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2015,2(4):333-337. [97] HU A,LI R,BRIDGES D,et al. Photonic nanomanufacturing of high performance energy devices on flexible substrates[J]. Journal of Laser Applications,2016,28(2):022602. [98] XIONG G,MENG C,REIFENBERGER R G,et al. A review of graphene-based electrochemical microsupercapacitors[J]. Electroanalysis,2014,26(1):30-51. |
[1] | 江安娜, 言兰, 王宁昌, 姜峰, 李卓, 温秋玲, 卢希钊, 黄辉. 能量场辅助激光诱导等离子体加工透明硬脆材料的研究现状及发展趋势[J]. 机械工程学报, 2024, 60(9): 254-272. |
[2] | 吴淑晶, 王大中, 谷顾全, 黄帅, 董国军, 郭国强, 安庆龙, 李长河. 多种能场高性能加工复杂曲面关键技术研究进展[J]. 机械工程学报, 2024, 60(9): 152-167. |
[3] | 袁松梅, 陈博川, 邵梦博. 微小孔钻削刀具制造技术研究进展综述[J]. 机械工程学报, 2023, 59(3): 265-282. |
[4] | 梅雪松, 李凯林, 赵万芹, 刘斌, 孙铮, 段文强, 王文君, 崔健磊, 凡正杰. 激光自身空间维度加工系统综述[J]. 机械工程学报, 2023, 59(19): 375-388. |
[5] | 梅雪松, 孙涛, 赵万芹, 凡正杰, 张涛, 唐程, 崔健磊, 王文君. 光学相干成像技术在激光加工过程实时监测与控制中的应用研究进展[J]. 机械工程学报, 2023, 59(15): 216-231. |
[6] | 汤勇, 白石根, 吴耀鹏, 袁伟, 万珍平, 谢颖熙. 高电压微型超级电容器的制造方法及研究进展[J]. 机械工程学报, 2021, 57(22): 305-324. |
[7] | 赵林杰, 程健, 陈明君, 袁晓东, 廖威, 杨浩, 刘启, 王海军. 熔石英光学元件的CO2激光加工技术研究新进展[J]. 机械工程学报, 2020, 56(11): 202-218. |
[8] | 常秋英, 齐烨, 王斌, 乔姣飞. 激光表面织构对45钢干摩擦性能的影响[J]. 机械工程学报, 2017, 53(3): 148-154. |
[9] | 刘荷辉;虞钢. 汽车模具复杂棱脊和沟槽的数字化及激光加工轨迹规划[J]. , 2004, 40(12): 155-159. |
[10] | 师汉民. 从外加工拓展到内加工——加工成形技术的一个新的发展动向[J]. , 2003, 39(11): 17-22. |
[11] | 虞钢;刘荷辉. 柔性激光加工系统中的测量功能及其静态误差分析[J]. , 2001, 37(8): 84-87,9. |
[12] | 张省 虞钢. 面向激光加工的自适应测量和神经网络方法[J]. , 2001, 37(5): 60-63. |
[13] | 丁明亮;梁锡昌;李军;熊见芬. 文字制造系统的研究[J]. , 1993, 29(6): 65-69. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 355
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 758
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||