[1] LASI H,FETTKE P,KEMPER H G,et al. Industry 4.0[J]. Business & Information Systems Engineering,2014,6(4):239-242. [2] ZHONG R Y,XU X,KLOTZ E,et al. Intelligent manufacturing in the context of industry 4.0:A review[J]. Engineering,2017,3(5):616-630. [3] 陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1-18. TAO Fei,LIU Weiran,ZHANG Meng,et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems,2019,25(1):1-18. [4] MINERVA R,LEE G M,CRESPI N,et al. Digital twin in the iot context:A survey on technical features,scenarios and architectural models[J]. Proceedings of the IEEE,2020,108(10):1785-1824. [5] QI Q,TAO F,HU T,et al. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems,2021,58:3-21. [6] 郭飞燕,刘检华,邹方,等. 数字孪生驱动的装配工艺设计现状及关键实现技术研究[J]. 机械工程学报,2019,55(17):110-132. GUO Feiyan,LIU Jianhua,ZOU Fang,et al. Research on the state-of-art,connotation and key implementation technology of assembly process planning with digital twin[J]. Journal of Mechanical Engineering,2019,55(17):110-132. [7] 孟博洋,李茂月,刘献礼,等. 机床智能控制系统体系架构及关键技术研究进展[J]. 机械工程学报,2021,57(9):147-166. MENG Boyang,LI Maoyue,LIU Xianli,et al. Research progress on the architecture and key technologies of machine tool intelligent control system[J]. Journal of Mechanical Engineering,2021,57(9):147-166. [8] 刘献礼,李雪冰,丁明娜,等. 面向智能制造的刀具全生命周期智能管控技术[J]. 机械工程学报,2021,57(10):196-219. LIU Xianli,LI Xuebing,DING Mingna,et al. Intelligent management and control technology of cutting tool life-cycle for intelligent manufacturing[J]. Journal of Mechanical Engineering,2021,57(10):196-219. [9] 陶飞,程颖,程江峰,等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统,2017,23(8):1603-1611. TAO Fei,CHENG Ying,CHENG Jiangfeng,et al. Theories and technologies for cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing Systems,2017,23(8):1603-1611. [10] 柳林燕,杜宏祥,汪惠芬,等. 车间生产过程数字孪生系统构建及应用[J]. 计算机集成制造系统,2019,25(6):1536-1545. LIU Linyan,DU Hongxiang,WANG Huifen,et al. Construction and application of digital twin system for production process in workshop[J]. Computer Integrated Manufacturing Systems,2019,25(6):1536-1545. [11] 郑守国,张勇德,谢文添,等. 基于数字孪生的飞机总装生产线建模[J]. 浙江大学学报,2021,55(5):843-854. ZHENG Shouguo,ZHANG Yongde,XIE Wentian,et al. Aircraft final assembly line modeling based on digital twin[J]. Journal of Zhejiang University,2021,55(5):843-854. [12] ZHANG M,Tao F,Nee A Y C. Digital twin enhanced dynamic job-shop scheduling[J]. Journal of Manufacturing Systems,2021,58,146-156. [13] ZHANG F,BAI J,YANG D,et al. Digital twin data-driven proactive job-shop scheduling strategy towards asymmetric manufacturing execution decision[J]. Scientific Reports,2022,12(1),1546-1564. [14] WANG Y,WU Z. Model construction of planning and scheduling system based on digital twin[J]. International Journal of Advanced Manufacturing Technology,2020,109(7-8),2189-2203. [15] 刘世民,孙学民,陆玉前,等. 知识驱动的加工产品数字孪生拟态建模方法[J]. 机械工程学报,2021,57(23):182-194. LIU Shimin,SUN Xuemin,LU Yuqian,et al. A knowledge-driven digital twin modeling method for machining products based on biomimicry[J]. Journal of Mechanical Engineering,2021,57(10):196-219. [16] Kong T,Hu T,Zhou T,et al. Data construction method for the applications of workshop digital twin system[J]. Journal of Manufacturing Systems,2021,58:323-328. [17] 张洁,高亮,秦威,等. 大数据驱动的智能车间运行分析与决策方法体系[J]. 计算机集成制造系统,2016,22(5):1220-1228. ZHANG Jie,GAO Liang,QIN Wei,et al. Big-data-driven operational analysis and decision-making methodology in intelligent workshop[J]. Computer Integrated Manufacturing Systems,2016,22(5):1220-1228. [18] 张洁,汪俊亮,吕佑龙,等. 大数据驱动的智能制造[J]中国机械工程,2019,30(2):127-133,158. ZHANG Jie,WANG Junliang,LÜ Youlong,et al. Big data driven intelligent manufacturing[J]. China Mechanical Engineering,2019,30(2):127-133,158. |