[1] 侯保荣,张盾,王鹏. 海洋腐蚀防护的现状与未来[J]. 中国科学院院刊,2016,31(12):1326-1331. HOU Baorong,ZHANG Dun,WANG Peng. Current status and future of marine corrosion protection[J]. Bulletin of Chinese Academy of Sciences,2016, 31(12):1326-1331. [2] 马秀敏,郑萌,徐玮辰,等. 腐蚀成本及控制策略研究[J]. 海洋科学,2021,45(2):161-168. MA Xiumin,ZHENG Meng,XU Weichen,et al. Study on corrosion cost and control strategy[J]. Marine Sciences,2021,45(2):161-168. [3] JADIDI P,ZEINODDINI M,Soltanpour M,et al. Towards an understanding of marine fouling effects on VIV of circular-cylinders:Aggregation effects[J]. Ocean Engineering,2018,147:227-242. [4] Abbas M,Shafiee M. An overview of maintenance management strategies for corroded steel structures in extreme marine environments[J]. Marine Structures,2020,71:102718. [5] 侯保荣. 海洋钢结构浪花飞溅区腐蚀防护技术[J]. 中国材料进展,2014,33(1):26-31. HOU Baorong. Anticorrosion technology to steel structure in splash zone[J]. Materials China,2014,33(1):26-31. [6] Iasgroup Corporation. Splash Genius cleaning system[EB/OL].[2019-12-18]. https://www.pinterest.com/pin/257408934932647182/?nic=1. [7] Fan J,Yang C,Chen Y,et al. An underwater robot with self-adaption mechanism for cleaning steel pipes with variable diameters[J]. Industrial Robot:An International Journal,2018,45(2):193-205. [8] 王立权,李超,陈凯云,等. 海洋钢桩清刷机器人清除粘附藤壶的力学研究[J]. 哈尔滨工程大学学报,2021,42(2):259-265. WANG Liqun,LI Chao,CHEN Kaiyun,et al. Mechanical research on removing adhesion barnacle with cleaning robot for marine steel pile[J]. Journal of Harbin Engineering University,2021,42(2):259-265. [9] ARACIL R,SALTARÉN R,REINOSO O. Parallel robots for autonomous climbing along tubular structures[J]. Robotics and Autonomous Systems,2003,42(2):125-134. [10] Han S,Ahn J,Moon H. Remotely controlled prehensile locomotion of a two-module 3D pipe-climbing robot[J]. Journal of Mechanical Science and Technology,2016,30(4):1875-1882. [11] Kim J H,Lee J C,Choi Y R. PiROB:vision-based pipe-climbing robot for spray-pipe inspection in nuclear plants[J]. International Journal of Advanced Robotic Systems,2018,15(6):1729881418817974. [12] Lee S H. Design of the out-pipe type pipe climbing robot[J]. International Journal of Precision Engineering and Manufacturing,2013,14(9):1559-1563. [13] Tavakoli M,Viegas C,Marques L,et al. OmniClimbers:Omni-directional magnetic wheeled climbing robots for inspection of ferromagnetic structures[J]. Robotics and Autonomous Systems,2013,61(9):997-1007. [14] 江励,管贻生,周雪峰,等. 双爪式爬杆机器人的夹持性能分析[J]. 机械工程学报,2016,52(3):34-40. JIANG Li,GUAN Yisheng,ZHOU Xuefeng,et al. Grasping performance analysis of a biped-pole-climbing robot[J]. Journal of Mechanical Enginering,2016,52(3):34-40. [15] 江励,管贻生,王建生,等. 爬杆机器人能量最优攀爬运动规划[J]. 机器人,2017,39(1):16-22. JIANG Li,GUAN Yisheng,WANG Jiansheng,et al. Energy-optimal motion planning of a biped pole-climbing robot[J]. Journal of Robot,2017,39(1):16. [16] 曹志华,陆小龙,赵世平,等. 电力铁塔攀爬机器人的步态分析[J]. 西安交通大学学报,2011,45(8):67-72. CAO Zhihua,LU Xiaolong,ZHAO Shiping,et al. Gait analysis for electricity pylon climbing robot[J]. Journal of Xi'an Jiaotong University,2011,45(8):67-72. [17] 刘辛军,谢福贵,汪劲松. 当前中国机构学面临的机遇[J]. 机械工程学报,2015,51(13):2-12. LIU Xinjun,XIE Fugui,WANG Jinsong. Current opportunities in the field of mechanisms in china[J]. Journal of Mechanical Engineering,2015, 51(13):2-12. [18] 姜铭,孙钊,秦康生,等. 混联机器人的分析与研究[J]. 制造业自动化,2009,31(1):61-65. JIANG Ming,SUN Zhao,QIN Kangsheng,et al. Study on serial-parallel mechanisms[J]. Manufacturing Automation,2009,31(1):61-65. [19] 沈惠平,赵海彬,邓嘉鸣,等. 基于自由度分配和方位特征集的混联机器人机型设计方法及应用[J]. 机械工程学报,2011,47(23):56-64. SHEN Huiping,ZHAO Haibin,DENG Jiaming,at al. Type design method and the application for hybrid robot based on freedom distribution and position and orientation characteristic set[J]. Journal of Mechanical Engineering,2011,47(23):56-64. [20] Pandilov Z,Dukovski V. Comparison of the characteristics between serial and parallel robots[J]. Acta Technica Corviniensis-Bulletin of Engineering,2014,7(1):1. [21] Campos A,Budde C,HESSELBACH J. A type synthesis method for hybrid robot structures[J]. Mechanism and Machine Theory,2008,43(8):984-995. [22] 卢文娟,张立杰,谢平,等. 以对过约束的认识看自由度分析的历史发展[J]. 机械工程学报,2017,53(15):81-92. Lu Wenjuan,Zhang Lijie,Xie Ping,et al. Review on the mobility development history with the understanding of overconstraints[J]. Journal of Mechanical Engineering,2017,53(15):81-92. [23] 黄真,刘婧芳,曾达幸. 基于约束螺旋理论的机构自由度分析的普遍方法[J]. 中国科学(E辑:技术科学),2009(1):84-93. HUANG Zhen,LIU Jingfang,Zeng Daxing. General methodology for the freedom synthesis of parallel manipulators based on reciprocal screw theory[J]. Sciencein China Series E:Technological Sciences,2009(1):84-93. [24] 黄真,刘婧芳,李艳文. 论机构自由度——寻找了150年的自由度通用公式[M]. 北京:科学出版社,2011. HUANG Zhen,LIU Jingfang,LI Yanwen. On the degree of freedom-the general formula of the degree of freedom which has been searched for 150 years[M]. Beijing:Science Press,2011. [25] 刘婧芳,黄晓欧,余跃庆,等. 多环耦合机构末端件自由度计算的等效法[J]. 机械工程学报,2014,50(23):13-19. LIU Jingfang,HUANG Xiaoou,YU Yueqing,et al. Equivalent method of output mobility calculation for a novel multi-loop coupled mechanism[J]. Journal of Mechanical Engineering,2014,50(23):13-19. [26] 叶鹏达,尤晶晶,仇鑫,等. 并联机器人运动性能的研究现状及发展趋势[J]. 南京航空航天大学学报,2020,52(3):363-377. YE Pengda,YOU Jingjing,QIU Xin,et al. Status and development trend of motion performance in parallel robot[J]. Journal of Nanjing University of Aeronautics & Astronautics,2020,52(3):363-377. |