[1] ZHU T, XIAO S N, LEI C, et al. Rail vehicle crashworthiness based on collision energy management:an overview[J]. International Journal of Rail Transportation,2021,9(2):101-131. [2] 郭河杰.基于晶体塑性的铝合金韧性断裂细观力学研究[D].哈尔滨:哈尔滨工业大学,2017.GUO Hejie. Research on micromechanics of ductile fracture of aluminum alloy based on crystal plasticity[D].Harbin:Harbin Institute of Technology,2017. [3] TVERGAARD V. Influence of void nucleation on ductile shear fracture at a free surface[J]. Journal of the Mechanics and Physics of Solids,1982,30(6):399-425. [4] HE Z,ZHU H,HU Y M. An improved shear modified GTN model for ductile fracture of aluminium alloys under different stress states and its parameters identification[J].International Journal of Mechanical Sciences,2021,192:106081. [5] LEMAITRE J. A continuous damage mechanics model for ductile fracture[J]. Transactions of the ASME Journal of Engineering Materials&Technology,1985,107(1):83-89. [6] YUE Z,CAO K,BADREDDINE H,et al. Failure prediction on steel sheet under different loading paths based on fully coupled ductile damage model[J].International Journal of Mechanical Sciences,2019,153(154):1-9. [7] ZHOU L,WEN H M. A new approach for the failure of metallic materials[J]. Chinese Journal of High Pressure Physics,2019,33(1):92-101. [8] ANDRADE F X C,FEUCHT M,HAUFE A,et al. An incremental stress state dependent damage model for ductile failure prediction[J]. International Journal of Fracture Mechanics,2016,200(1-2):127-150. [9] 梁宾,赵岩,赵清江,等.基于Gissmo失效模型的6016铝合金板材断裂行为研究及应用[J].机械工程学报,2019,55(18):53-62.LIANG Bin,ZHAO Yan,ZHAO Qingjiang,et al. On the prediction of failure in 6016 aluminum alloy sheet by Gissmo damage model[J]. Journal of Mechanical Engineering,2019,55(18):53-62. [10] ZHANG Z,CUI Y,YU G,et al. Damaged and failure characterization of 7075-T6 Al alloy based on GISSMO model[J]. Journal of Mechanical Science and Technology,2021,35(12):1209-1214. [11] XIAO Y,HU Y M. Numerical and experimental fracture study for 7003 aluminum alloy at different triaxialities[J].Metals and Materials International,2020,1900:1-13. [12] 冯悦. SUS301L-MT材料的动态本构及断裂失效模型研究[D].成都:西南交通大学,2019.FENG Yue. Dynamic constitutive and fracture failure model of SUS301L-MT material[D]. Chengdu:Southwest Jiaotong University,2019. [13] 王栋,刘淼,王光耀,等.基于LS-DYNA的热成型钢断裂失效预测研究[J].固体力学学报,2018,39(2):197-202.WANG Dong,LIU Miao,WANG Guangyao,et al. Failure prediction of hot-formed steel based on LS-DYNA[J].Chinese Journal of Solid Mechanics, 2018, 39(2):197-202. [14] ANDRADE F,FEUCHT M,HAUFE A. On the prediction of material failure in LS-DYNA:A comparison between GISSMO and DIEM[C]//International Ls-dyna Users Conference. Dearborn:LSTC,2014:1-12. [15] HOOPUTRA H, GESE H, DELL H, et al. A comprehensive failure model for crashworthiness simulation of aluminium extrusions[J]. International Journal of Crashworthiness,2010,9(5):449-464. [16] ESTRADA Q,SZWEDOWICZ D,JESÚS S A,et al.Crashworthiness behaviour of aluminum profiles with holes considering damage criteria and damage evolution[J]. International Journal of Mechanical Sciences,2017,131(132):776-791. [17] ESTRADA Q,SZWEDOWICZ D,ALEJANDRO R M,et al. Energy absorption performance of concentric and multi-cell profiles involving damage evolution criteria[J].Thin-Walled structures,2018,124:218-234. [18] MARZBANRAD J,KESHAVARZI A,ABOUTALEBI F H. Influence of elastic and plastic support on the energy absorption of the extruded aluminium tube using ductile failure criterion[J]. International Journal of Crashworthiness,2014,19(2):172-181. [19] ALLAHBAKHSH H R,SAEMI J,HOURALI M. Design optimization of square aluminium damage columns with crashworthiness criteria[J]. Mechanika,2011,17(2):187-192. [20] 卢翀.轨道车辆用金属材料的韧性断裂准则研究[D].北京:中国铁道科学研究院,2019.LU Chong. Research on ductile fracture criterion of metal materials for railway vehicles[D]. Beijing:China Academy of Railway Sciences,2019. [21] PENG Z A,MPP B,BA A,et al. Plastic instability and fracture of ultra-thin stainless-steel sheet[J]. International Journal of Solids and Structures,2020,202:699-716. [22] QIN S,WANG Z,BEESE A M. Orientation and stress state dependent plasticity and damage initiation behaviour of stainless steel 304L manufactured by laser powder bed fusion additive manufacturing[J]. Extreme Mechanics Letters,2021,45:101271. [23] 刘淼,吕植强,王光耀.高强钢及软钢断裂失效行为表征与仿真预测[J].力学季刊,2018,39(4):829-836.LIU Miao,LÜZhiqiang,WANG Guangyao. Fracture failure characterization and prediction of high strength steel and mild steel[J]. Chinese Quarterly of Mechanics,2018,39(4):829-836. [24] DOBES M,NAVRATIL J. Computational material models for TSCP plastics comparison of the deformation behaviour with MAT 24 and MAT SAMP-1 with DIEM[C]//11th European Ls-dyna Conference. Salzburg Austria:LSTC,2017. [25] ABUBAKAR A,DOW R S. Simulation of ship grounding damage using the finite element method[J]. International Journal of Solids and Structures,2013,50(5):623-636. [26] HOGSTROM P,RINGSBERG J W,JOHNSON E,et al.An experimental and numerical study of the effects of length scale and strain state on the necking and fracture behaviours in sheet metals[J]. International Journal of Impact Engineering,2009,36(10-11):1194-1203. [27] KEUNHWAN P,THOMAS T D,GORJI M B,et al.Hosford-Coulomb ductile failure model for shell elements:Experimental identification and validation for DP980 steel and aluminum 6016-T4[J]. International Journal of Solids and Structures,2018,151:214-232. [28] WALTERS C L. Framework for adjusting for both stress triaxiality and mesh size effect for failure of metals in shell structures[J]. International Journal of Crashworthiness,2014,19(1):1-12. [29] COSTAS M,MORIN D,HOPPERSTAD O S,et al. A through-thickness damage regularization scheme for shell elements subjected to severe bending and membrane deformations[J]. Journal of the Mechanics and Physics of Solids,2018,123:190-206. |