• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (6): 95-102.doi: 10.3901/JME.2023.06.095

• 材料科学与工程 • 上一篇    下一篇

扫码分享

稀疏重构SAM芯片焊点检测方法研究

陆向宁1,2, 刘凡1, 何贞志1, 廖广兰2, 史铁林2   

  1. 1. 江苏师范大学机电工程学院 徐州 221116;
    2. 华中科技大学数字制造装备与技术国家重点实验室 武汉 430074
  • 收稿日期:2022-09-08 修回日期:2023-01-30 出版日期:2023-03-20 发布日期:2023-06-03
  • 通讯作者: 何贞志(通信作者),男,1982年出生,博士,副教授,硕士研究生导师。主要研究方向为无损检测、智能传感技术。E-mail:hezz82@163.com
  • 作者简介:陆向宁,男,1981年出生,博士,教授,硕士研究生导师。主要研究方向为无损检测、微电子封装及可靠性分析。E-mail:lxnam89@163.com
  • 基金资助:
    国家自然科学基金(52075231)、江苏省高校“青蓝工程”和徐州市科技计划(KC21327)资助项目。

Solder Joint Inspection Using SAM Image through Sparse Reconstruction

LU Xiangning1,2, LIU Fan1, HE Zhenzhi1, LIAO Guanglan2, SHI Tielin2   

  1. 1. School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou 221116;
    2. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074
  • Received:2022-09-08 Revised:2023-01-30 Online:2023-03-20 Published:2023-06-03

摘要: 提出了基于稀疏表示的声扫描显微镜(Scanning acoustic microscope, SAM)图像超分辨率重构方法,以解决其空间检测分辨率受超声波频率和穿透深度的限制,原始SAM图像分辨率较低,不利于封装缺陷辨识等问题。通过字典设计训练和稀疏系数α求解获得了重构的高分辨率SAM图像,利用Levenberg-Marquardt算法改进BP神经网络(LM-BP),并用于倒装芯片焊点缺陷识别。与原始图像及双三次插值图像相比,稀疏重构图像的峰值信噪比明显增大,提高了SAM图像质量,减小了芯片焊点的错误识别数目,错误率降至2.76%。试验结果表明稀疏表示的SAM重构算法和LM-BP神经网络训练速度快、识别精度高,可用于高密度半导体封装缺陷的检测及可靠性评估。

关键词: 倒装芯片, 缺陷检测, 扫描声学显微镜, 稀疏表示算法, 神经网络

Abstract: An algorithm based on sparse representation was proposed to reconstruct high-resolution (HR) SAM images. Scanning acoustic microscope (SAM) is always used for defect detection of electronic packages, but the spatial resolution is limited by the frequency and penetration depth of ultrasound. The original SAM image with low resolution is adverse to defect recognition. The HR SAM image is obtained through dictionary training and sparse coefficient α solving. The Levenberg-Marquardt modified BP neural network (LM-BP) was used to classify the solder joints. Compared with the original image and the bicubic interpolation image, the peak signal-to-noise ratio of the sparsely reconstructed image is significantly increased, the quality of the SAM image is improved, the number of misidentified solder joints is reduced, and the error rate is reduced to 2.76%. The experimental results demonstrated that the sparse representation algorithm and the LM-BP neural network are effective and accurate for defect inspection of high-density packages.

Key words: flip chip, defects inspection, SAM, sparse representation, neural network method

中图分类号: