[1] 吴圣川,吴正凯,康国政,等. 先进材料多维多尺度高通量表征研究进展[J]. 机械工程学报,2021,57(16):37-65. WU Shengchuan,WU Zhengkai,KANG Guozheng,et al. Research progress on multi-dimensional and multi-scale high-throughput characterization for advanced materials[J]. Journal of Mechanical Engineering,2021,57(16):37-65. [2] LI Wangchang,PU Yangyang,YING Yao,et al. Magnetic properties and related mechanisms of iron-based soft magnetic composites with high thermal stability in situ composite-ferrite coating[J]. Journal of Alloys and Compounds,2020,829:154533-154541. [3] 黎兴刚,刘畅,朱强,等. 面向金属增材制造的气体雾化制粉技术研究进展[J]. 航空制造技术,2019,66(22):22-34. LI Xinggang,LIU Chang,ZHU Qiang,et al. Research progress on gas atomization technology for preparation of feedstock powder used in metal additive manufacturing[J]. Aeronnautical Manufacturing Technology,2019,62(22):22-34. [4] SUN Haibo,GUO Zhili,LIANG Zukun,et al. Enhancements of preparation efficiency and magnetic properties for Fe-based amorphous magnetic flake powder cores upon the adoption of a novel double-Paralleled slits nozzle[J]. Journal of Magnetism and Magnetic Materials,2020,500(C):166358-166366. [5] TONG Jiang,ZHANG Jianfeng,WANG Yue,et al. Preparation of Co-plated WC powders by a non-precious-Co-activation triggered electroless plating strategy[J]. Journal of Advanced Powder Technology,2019,30(10):2311-2319. [6] 尹建成,杨环,刘英莉,等. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程,2018,46(11):102-109. YIN Jiancheng,YANG Huan,LIU Yingli,et al. Simulation of atomization gas flow field during constrained spray deposition process[J]. Journal of Materials Engineering,2018,46(11):102-109. [7] ZHAO Tongchun,CHEN Cunguang,WU Xiaojie,et al. FeSiBCrC amorphous magnetic powder fabricated by gas-water combined atomization[J]. Journal of Alloys and Compounds,2021,857:157991-1578001. [8] 刘佳奇,庞靖,王璞,等. 液态金属雾化成形及非晶合金制粉的研究进展[J]. 中国冶金,2022,32(2):1-14. LIU Jiaqi,PANG Jing,WANG Pu,et al. Research progress of liquid metal atomization technology and preparation of its amorphous powders[J]. China Metallurgy,2022,32(2):1-14. [9] SI Chaorun,ZHANG Xianjie,WANG Juebiao,et al. Design and evaluation of a Laval-type supersonic atomizer for low-pressure gas atomization of molten metals[J]. International Journal of Minerals Metallurgy and Materials,2014,21(6):627-635. [10] NICHIPORENKO O S,NAIDA Y I. Fashioning the shape of sprayed powder particles[J]. Soviet Powder Metallurgy and Metal Ceramics,1968,7(10):753-755. [11] THOMPSON J S,HASSAN O,ROLLAND S A,et al. The identification of an accurate simulation approach to predict the effect of operational parameters on the particle size distribution (PSD) of powders produced by an industrial close-coupled gas atomiser[J]. Powder Technology,2016,291:75-85. [12] 郭快快,商硕,陈进,等. 数值模拟雾化气压对GH4169合金粉末粒径的影响[J]. 东北大学学报,2020,41(6):807-812. GUO Kuaikuai,SHANG Shuo,CHEN Jin,et al. Numerical simulation of influence of atomization pressure on particle size of GH4169 alloy powders[J]. Journal of Northeastern University,2020,41(6):807-812. [13] ÖZBILEN S. Influence of atomising gas pressure on particle shape of Al and Mg powders[J]. Powder Technology,1999,102(2):109-119. [14] AUDIN O,UNAL R. Experimental and numerical modelling of the gas atomization nozzle for gas flow behavior[J]. Computers and Fluids,2011,42(1):37-43. [15] 金莹,刘平,史金光,等. 雾化压力对电极感应熔炼气体雾化TC4粉末形貌与性能的影响[J]. 粉末冶金材料科学与工程,2018,23(3):312-317. JIN Ying,LIU Ping,SHI Jinguang,et al. Effects of gas-atomized pressure on morphology and properties of TC4 powder prepared by electrode-induced gas atomization[J]. Materials Science and Engineering of Powder Metallurgy,2018,23(3):312-317. [16] GAO Chaofeng,XIAO Zhiyu,ZOU Haipeng,et al. Characterization of spherical AlSi10Mg powder produced by double-nozzle gas atomization using different parameters[J]. Transactions of Nonferrous Metals Society of China,2019,29(2):374-384. [17] WANG Peng,LI Jing,WANG Xing,et al. Impact mechanism of gas temperature in metal powder production via gas atomization[J]. Chinese Physics B,2021,30(5):329-343. [18] 王长军,刘雨,谢琰军,等. 增材制造用气雾化制粉工艺数值模拟及机理分析[J]. 粉末冶金工业,2021,31(4):22-28. WANG Changjun,LIU Yu,XIE Yanjun,et al. Numerical simulation and mechanism analysis of gas atomized pulverizing process for additive manufacturing[J]. Powder Metallurgy Industry,2021,31(4):22-28. [19] 周珊,刘明翔,隋大山,等. 液态金属超声雾化喷嘴的气雾化性能影响因素[J]. 粉末冶金材料科学与工程,2017,22(4):451-457. ZHOU Shan,LIU Mingxiang,SUI Dashan,et al. Influence factors of gas atomization performance of liquid metal ultrasonic atomizer nozzle[J]. Materials Science and Engineering of Powder Metallurgy,2017,22(4):451-457. [20] 徐良辉,周香林,李景昊,等. 基于回流区特性的气雾化喷嘴设计及流场结构模拟[J]. 热喷涂技术,2019,11(3):30-37. XU Lianghui,ZHOU Xianglin,LI Jinghao,et al. Design of atomizing nozzle and simulation of its flow field structure[J]. Thermal Spray Technology,2019,11(3):30-37. [21] XU Lianghui,ZHOU Xianglin,LI Jinhao,et al. Numerical simulations of molten breakup behaviors of a de laval-type nozzle,and the effects of atomization parameters on particle size distribution[J]. Processes,2020,8(9):1027-1045. [22] 赵飞,张延玲,朱荣,等. 超音速射流流场中湍流模型[J]. 北京科技大学学报,2014,36(3):366-372. ZHAO Fei,ZHANG Yanling,ZHU Rong,et al. Turbulence model in supersonic jet flow field[J]. Journal of University of Science and Technology Beijing,2014,36(3):366-372. [23] ÜNAL A. Gas atomization of fine zinc powders[J]. International Journal of Powder Metallurgy,1990,26(1):11-21. [24] GERMAN R M. Powder metallurgy science[M]. Princeton,NJ:Metal Powder Industries Federation,1994. [25] ROEBUCK J R,OSTERBERG H. The Joule-Thomson effect in nitrogen[J]. Physical Review,1935,48(5):450-457. [26] STOBIK M. Nanoval atomizing-caPabilities,applications and related processes[C]//Symposium Spray Forming. Bremen,2002:65-79. [27] APPLETON J P. Structure of a Prandt-Meyer expansion in an ideal dissociating gas[J]. The Physics of Fluids,1963,6(8):1057-1062. [28] 夏敏,汪鹏,葛昌纯,等. 电极感应熔化气雾化法制备高温合金粉末中非限制式喷嘴的结构优化设计[J]. 粉末冶金技术,2019,37(4):288-297. XIA Min,WANG Peng,GE Changchun,et al. Optimum structure design of free-fall nozzle in preparation process of superalloy powders by electrode induction gas atomization technology[J]. Powder Metallurgy Technology,2019,37(4):288-297. [29] MOTAMAN S,Mullis A M,Cochrane R F,et al. Numerical and experimental investigations of the effect of melt delivery nozzle design on the open-to closed-wake transition in closed-coupled gas atomization[J]. Metallurgical and Materials Transactions B,2015,46(4):1990-2004. [30] FRITSCHING U. Spray simulation:Modeling and numerical simulation of spray forming metals[M]. Cambridge:Cambridge University Press,2004. [31] FIRMANSYAH D A,KAISER R,ZAHAF R,et al. Numerical simulations of supersonic gas atomization of liquid metal droplets[J]. Japanese Journal of Applied Physics,2014,53(5S3):1-7. [32] VAN H T,HEILIGERS M,JAEKEN A. Choking phenomena in a vortex flow passing a laval tube:An analytical treatment[J]. Journal of Fluids Engineering,2009,131(4):041201-041206. [33] WOLF G,BERGMAN H W.Investigations on melt atomization with gas and liquefied cryogenic gas[J]. Materials Science and Engineering:A,2002,326(1):134-143. [34] ÜNAL A. Influence of gas flow on performance of "confined" atomization nozzles[J]. Metallurgical and Materials Transactions B,1989,20(6):833-843. |