• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (24): 289-299.doi: 10.3901/JME.2022.24.289

• 运载工程 • 上一篇    下一篇

扫码分享

基于激光点云与图像融合的3D目标检测研究

刘永刚1,2, 于丰宁1, 章新杰2, 陈峥3, 秦大同1   

  1. 1. 重庆大学机械与运载工程学院/机械传动国家重点实验室 重庆 400044;
    2. 吉林大学汽车仿真与控制国家重点实验室 长春 130025;
    3. 昆明理工大学交通工程学院 昆明 650500
  • 收稿日期:2022-01-19 修回日期:2022-09-26 出版日期:2022-12-20 发布日期:2023-04-03
  • 通讯作者: 刘永刚(通信作者),男,1982年出生,博士,教授,博士研究生导师。主要研究方向为智能汽车决策与控制关键技术、新能源汽车动力系统优化与控制、车辆自动变速传动及综合控制。E-mail:andyliuyg@cqu.edu.cn
  • 作者简介:刘永刚(通信作者),男,1982年出生,博士,教授,博士研究生导师。主要研究方向为智能汽车决策与控制关键技术、新能源汽车动力系统优化与控制、车辆自动变速传动及综合控制。E-mail:andyliuyg@cqu.edu.cn;于丰宁,男,1997年出生,硕士研究生。主要研究方向为智能汽车激光雷达3D目标检测。E-mail:yufengning@cqu.edu.cn;章新杰:男,1984年出生,博士,教授,博士研究生导师。主要研究方向为车辆动力学及控制、智能运载测试与评价、驾驶员模型。E-mail:x_jzhang@jlu.edu.cn;陈峥,男,1982年出生,博士,教授,博士研究生导师。主要研究方向为动力电池管理、智能车辆控制及混合动力汽车能量管理。E-mail:chen@kust.edu.cn;秦大同,男,1956年出生,博士,教授,博士研究生导师。主要研究方向为机械传动系统、车辆动力传动及其智能控制。E-mail:dtqin@cqu.edu.cn
  • 基金资助:
    国家自然科学基金(51775063)汽车仿真与控制国家重点实验室开放基金(20201101)和重庆自主品牌汽车协同创新中心揭榜挂帅项目(2022CDJDX-004)资助项目。

Research on 3D Object Detection Based on Laser Point Cloud and Image Fusion

LIU Yonggang1,2, YU Fengning1, ZHANG Xinjie2, CHEN Zheng3, QIN Datong1   

  1. 1. State Key Laboratory of Mechanical Transmissions, College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044;
    2. State Key Laboratory of Automotive Simulation and Control, Jinlin University, Changchun 130025;
    3. Faculty of Transportation Engineering in Kunming University of Science and Technology, Kunming 650500
  • Received:2022-01-19 Revised:2022-09-26 Online:2022-12-20 Published:2023-04-03

摘要: 目前基于激光雷达与摄像头融合的目标检测技术受到了广泛的关注,然而大部分融合算法难以精确检测行人、骑行人等较小目标物体,因此提出一种基于自注意力机制的点云特征融合网络。首先,改进Faster-RCNN目标检测网络以形成候选框,然后根据激光雷达和相机的投影关系提取出图像目标框中的视锥点云,减小点云的计算规模与空间搜索范围;其次,提出一种基于自注意力机制的Self-Attention PointNet网络结构,在视锥范围内对原始点云数据进行实例分割;然后,利用边界框回归PointNet网络和轻量级T-Net网络来预测目标点云的3D边界框参数,同时在损失函数中添加正则化项以提高检测精度;最后,在KITTI数据集上进行验证。结果表明,所提方法明显优于广泛应用的F-PointNet,在简单、中等和困难任务下,汽车、行人和骑行人的检测精度均得到较大的提升,其中骑行人的检测精度提升最为明显。同时,与许多主流的三维目标检测网络相比具有更高的准确率,有效地提高了3D目标检测的精度。

关键词: 激光雷达, 3D目标检测, 点云融合, 注意力机制, 深度学习

Abstract: At present, 3D object detection based on the fusion of lidar and camera has received extensive attention. However, most fusion algorithms are difficult to accurately detect small target objects such as pedestrians and cyclists. Therefore, a feature fusion network based on the self-attention mechanism is proposed, which fully considers the local feature information to achieve accurate 3D object detection. Firstly, to reduce the spatial search range of the point cloud, the Faster-RCNN is improved to form a candidate box. Then, the frustum point cloud was extracted according to the projection relationship between the lidar and the camera. Secondly, a Self-Attention PointNet based on the self-attention mechanism is proposed to segment the original point cloud data within the scope of the frustum. Finally, while using the PointNet and T-Net to predict the 3D bounding box parameters, the regularization term is considered in the loss function to achieve higher convergence accuracy. The KITTI dataset is used for verification and testing. The results show that this method is obviously superior to F-PointNet and the detection accuracy of cars, pedestrians, and cyclists has been greatly improved, and it has higher accuracy than mainstream 3D object detection networks.

Key words: lidar, 3D object detection, point cloud fusion, attention mechanism, deep learning

中图分类号: