• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (15): 121-133.doi: 10.3901/JME.2022.15.121

• 特邀专栏:先进磨粒加工技术 • 上一篇    下一篇

扫码分享

单晶硅微细磨削非稳态特征声发射信号感知研究

张学学, 任莹晖, 杨伟程, 李伟, 于康宁   

  1. 湖南大学机械与运载工程学院 长沙 410082
  • 收稿日期:2021-12-03 修回日期:2022-02-08 发布日期:2022-10-13
  • 通讯作者: 任莹晖(通信作者),女,1979年出生,博士,副教授,硕士研究生导师。主要研究方向为难加工材料精密超精密加工技术。E-mail:rebecca_ryh@163.com
  • 作者简介:张学学,男,1998年出生。主要研究方向为难加工材料微细磨削技术。E-mail:2477033981@qq.com;杨伟程,男,1996年出生,硕士。主要研究方向为难加工材料微细磨削技术。E-mail:1193588414@qq.com;李伟,男,1983年出生,博士,副教授,博士研究生导师。主要研究方向为难加工材料高效精密加工技术及智能机床装备。E-mail:liweihnu123@sina.com;于康宁,女,1996年出生,硕士研究生。主要研究方向为机器视觉。E-mail:ykangning130121@163.com
  • 基金资助:
    国家自然科学基金资助项目(52075161,51875192)。

Study on Acoustic Emission Signal Perception of Unsteady Characteristic in Micro-grinding of Monocrystalline Silicon

ZHANG Xuexue, REN Yinghui, YANG Weicheng, LI Wei, YU Kangning   

  1. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082
  • Received:2021-12-03 Revised:2022-02-08 Published:2022-10-13

摘要: 针对硬脆材料微小零件和微结构微细磨削加工时非稳态特征感知和识别难题,开展单晶硅微细磨削非稳态特征声发射信号感知方法和分析研究。设计了单晶硅微槽阵列微细磨削单因素工艺实验,搭建了声发射(AE)信号实时监测平台,基于均方根法提取了信号时域特征并采用小波包分解法和快速傅里叶变换划分了对应频带。选取微磨具直径损失量、微槽平均崩边宽度及微槽锥度角作为微磨具磨损和磨削质量变化的非稳态特征评价指标。探究了声发射信号时、频域特征与非稳态特征间的相关性。结果表明,AE信号分析区间的均方根与微槽平均崩边宽度近似为线性关系。低频带信号(0~62.5 kHz)主要源于机械振动及磨屑与工件、微磨具间的摩擦作用。中频带AE信号(62.5~125k Hz)主要源于微磨具对微槽的成型作用,其能量占比能反映微磨具磨损程度。高频带AE信号(125~500 kHz)主要源于材料的脆性碎裂去除,其能量占比能反映微槽崩边损伤程度。

关键词: 微细磨削, 非稳态特征, 声发射, 时频域特征, 信号感知

Abstract: To solve problem of unsteady characteristics identification, the signal processing and identification method are carried out based on acoustic emission(AE) signal of unsteady feature in monocrystalline silicon micro-grinding.The single factor micro-grinding experiment of monocrystalline silicon micro-groove array is designed, and the real-time monitoring platform for the AE signal is built.The signal time domain characteristics are extracted by root mean square(RMS) method and the frequency bands are divided by wavelet packet decomposition(WPD) and fast Fourier transform(FFT).Tool tip diameter loss, micro-groove mean edge chipping width and micro-groove taper angle are selected as indexes to evaluate unsteady features of micro-grinding connected with tool wear and grinding quality variation.Furthermore, on the basis of experimental results the correlation between indexes and frequency band characteristics is discussed.The results show that the RMS of AE signal analysis interval is approximately linear with micro-groove mean edge chipping width.Low frequency band signal(0-62.5 kHz) mainly comes from mechanical vibration and friction of debris between workpiece and tool.Intermediate frequency band signal(62.5-125 kHz) mainly comes from the forming effect of the tool on the micro groove, whose energy proportion can reflect the tool wear degree.High frequency band signal(125-500 kHz) mainly comes from the material brittle fracture removal, whose energy proportion can reflect the edge chipping degree.

Key words: micro-grinding, unsteady characteristics, acoustic emission, time frequency characteristics, signal perception

中图分类号: