[1] 王建斌, 周立波.化学机械磨削(CMG)加工单晶硅片[J].人工晶体学报, 2018, 47(4):715-720.WANG Jianbin, ZHOU Libo. Introduction of chemical mechanical grinding(CMG) on single crystal silicon wafer[J]. Journal of Synthetic Crystals, 2018, 47(4):715-720. [2] 张福生, 杨昆, 刘新辉, 等.无微管缺陷六英寸Si C单晶的制备[J].硅酸盐学报, 2021, 49(4):1-7.ZHANG Fusheng, YANG Kun, LIU Xinhui, et al. Growth of six inches SiC single crystals with out zero micropipe defects[J]. Journal of the Chinese ceramic society, 2021, 49(4):1-7. [3] 王紫光, 康仁科, 周平, 等.单晶硅反射镜的超精密磨削工艺[J].光学精密工程, 2019, 27(5):1087-1095.WANG Ziguang, KANG Renke, ZHOU Ping, et al.Ultra-precision grinding of monocrystalline silicon reflector[J]. Optics and Precision Engineering, 2019, 27(5):1087-1095. [4] 张剑寒, 张宇民, 韩杰才, 等.空间反射镜材料性能的研究[J].材料导报, 2006, 20(2):5-9.ZANG Jianhan, ZHANG Yumin, HAN Jiecai, et al. Study of space mirror material properties[J]. Materials Review, 2006, 20(2):5-9. [5] 陈芬, 吴亚茹, 朱皓, 等.氧化锆生物陶瓷的立体光固化制备及其力学与生物性能[J].硅酸盐学报, 2021, 49(9):1-9.CHEN Fen, WU Yaru, ZHU Hao, et al. Mechanical and biological properties of ZrO2 bioceramics by stereolithography technique[J]. Journal of the Chinese Ceramic Society, 2021, 49(9):1-9. [6] GAO P, LIANG Z, WANG X, et al. Cutting edge damage in grinding of cemented carbides micro end mills[J].Ceramics International, 2017, 43(14):11331-11338. [7] BIFANO T J, DOW T A, SCATTERGOOD R O.Ductile-regime grinding-a new technology for machining brittle materials[J]. Journal of Engineering for Industry-Transactions of the ASME, 1991, 113(2):184-189. [8] YANG M, LI C H, ZHANG Y B, et al. Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(5-8):2617-2632. [9] HUANG H, LI X L, MU D K, et al. Science and art of ductile grinding of brittle solids[J]. International Journal of Machine Tools&Manufacture, 2021, 161:103675. [10] HUANG H, LAWN B R, COOK R F, et al. Critique of materials-based models of ductile machining in brittle solids[J]. Journal of the American Ceramic Society, 2020, 103(11):6096-6100. [11] DAI J B, SU H H, YU T F, et al. Experimental investigation on materials removal mechanism during grinding silicon carbide ceramics with single diamond grain[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, 2018, 51:271-279. [12] SINGH A, SOLANKI D, SENCHA R, et al. Study and characterization of the ductile-brittle transition zone in sintered zirconia[J]. Journal of Manufacturing Processes, 2020, 58:749-762. [13] YANG M, LI C H, ZHANG Y B, et al. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. International Journal of Machine Tools&Manufacture, 2017, 122:41-51. [14] MA L J, YU A B, GU L C, et al. Mechanism of compound fracture and removal in grinding process for low-expansion glass ceramics[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(5-8):2303-2313. [15] WIRTZ C, MUELLER S, MATTFELD P, et al. A discussion on material removal mechanisms in grinding of cemented carbides[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2017, 139(12):121002. [16] WU J, CHENG J, GONG Y D. A study on material removal mechanism of ultramicro-grinding(UMG) considering tool parallel run-out and deflection[J].International Journal of Advanced Manufacturing Technology, 2019, 103(1-4):631-653. [17] LIU Y, LI B Z, WU C J, et al. Smoothed particle hydrodynamics simulation and experimental analysis of SiC ceramic grinding mechanism[J]. Ceramics International, 2018, 44(11):12194-12203. [18] LAWN B R, JENSEN T, ARORA A. Brittleness as an indentation size effect[J]. Journal of Materials Science, 1976, 11(3):573-575. [19] KIYASHKO M V, GRINCHUK P S, KUZNETSOVA T A, et al. Determination of elastic modulus of SiC-based composite ceramics[J]. Technical Physics Letters, 2021, 47(2):150-153. [20] CHEN P W, CHEN J J, GUO B Q, et al. Measurement of the dynamic fracture toughness of alumina ceramic[M]//SONG B, LAMBERSON L, CASEM D, et al.Dynamic Behavior of Materials, 2016, 1:33-38. [21] HU X, WANG F C, WANG Y W, et al. Effect of confined stress on dynamic hardness of ceramic AD95[J]. Rare Metal Materials and Engineering, 2009, 38:1164-1166. [22] BRANCH N A, SUBHASH G, ARAKERE N K, et al.Material-dependent representative plastic strain for the prediction of indentation hardness[J]. Acta Materialia, 2010, 58(19):6487-6494. [23] SHAW M C, COOKSON J O. Metal cutting principles[M].New York:Oxford university press, 2005. [24] ZHANG B, TOKURA H, YOSHIKAWA M. Study on surface cracking of alumina scratched by single-point diamonds[J]. Journal of Materials Science, 1988, 23(9):3214-3224. [25] ZHANG B, HOWES T D. Material-removal mechanisms in grinding ceramics[J]. CIRP Annals-Manufacturing Technology, 1994, 43(1):305-308. [26] ZHANG B, ZHENG X L, TOKURA H, et al. Grinding induced damage in ceramics[J]. Journal of Materials Processing Technology, 2003, 132(1-3):353-364. [27] LARSEN D C. Ceramic Materials for Advanced Heat Engines[M]. Park Ridge:Noyes Publications, 1985. [28] WANG W, WANG Z, YAO P, et al. Ductile-brittle transition mechanisms of amorphous glass subjected to taper grinding experiment[J]. Ceramics International, 2021, 47(2):1844-1854. [29] RAO X S, ZHANG F H, LUO X C, et al. Material removal mode and friction behaviour of RB-SiC ceramics during scratching at elevated temperatures[J]. Journal of the European Ceramic Society, 2019, 39(13):3534-3545. [30] WANG Y C, ZHANG W, WANG L Y, et al. In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon[J]. NPG Asia Materials, 2016, 8:1-7. [31] FANG F Z, WU H, ZHOU W, et al. A study on mechanism of nano-cutting single crystal silicon[J].Journal of Materials Processing Technology, 2007, 184(1-3):407-410. [32] ZHANG Q L, TO S, ZHAO Q L, et al. Recrystallization of amorphized Si during micro-grinding of RB-SiC/Si composites[J]. Materials Letters, 2016, 172:48-51. [33] ZHANG Z Y, WANG B, KANG R K, et al. Changes in surface layer of silicon wafers from diamond scratching[J].CIRP Annals-Manufacturing Technology, 2015, 64(1):349-352. [34] STOKES R J, JOHNSTON T L, LI C H. Crack formation in magnesium oxide single crystals[J]. Philosophical Magazine, 1958, 3(31):718-725. [35] YIN J F, BAI Q, GOEL S, et al. An analytical model to predict the depth of sub-surface damage during grinding of brittle materials[J]. CIRP-Journal of Manufacturing Science and Technology, 2021, 33:454-464. [36] YAN J W, ASAMI T, HARADA H, et al. Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, 2009, 33(4):378-386. [37] WU Y Q, HUANG H, ZOU J, et al. Nanoscratch-induced deformation of single crystal silicon[J]. Journal of Vacuum Science&Technology B, 2009, 27(3):1374-1377. [38] ZHANG Z Y, HUO Y X, GUO D M. A model for nanogrinding based on direct evidence of ground chips of silicon wafers[J]. Science China-Technological Sciences, 2013, 56(9):2099-2108. [39] WANG B, LIU Z Q, SU G S, et al. Brittle removal mechanism of ductile materials with ultrahigh-speed machining[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2015, 137(6):061002. [40] YANG X, ZHANG B. Material embrittlement in high strain-rate loading[J]. International Journal of Extreme Manufacturing, 2019, 1(2):022003. [41] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics-Transactions of the ASME, 2011, 78(5):051003. [42] 姜峰, 李子沐, 王宁昌, 等.高应变率条件下山西黑花岗岩的动态力学性能研究[J].振动与冲击, 2016, 35(8):177-182.JIANG Feng, LI Zimu, WANG Ningchang, et al.Research on dynamic characteristics of Shanxi black granite under high strain rates[J]. Journal of Vibration and Shock, 2016, 35(8):177-182. [43] 汤佳妮, 徐便, 郑宇轩, 等.脆性膨胀环动态拉伸碎裂实验研究[J].爆炸与冲击, 2021, 41(1):96-104.TANG Jiani, XU Bian, ZHENG Yuxuan, et al.Experimental study for dynamic fragmentation of brittle expansion rings[J]. Explosion and Shock Waves, 2021, 41(1):96-104. [44] WANG B, LIU Z Q, SU G S, et al. Investigations of critical cutting speed and ductile-to-brittle transition mechanism for workpiece material in ultra-high speed machining[J]. International Journal of Mechanical Sciences, 2015, 104:44-59. [45] ZHANG B, YIN J. The ‘skin effect’ of subsurface damage distribution in materials subjected to high-speed machining[J]. International Journal of Extreme Manufacturing, 2019, 1(1):012007. [46] LV D X, HUANG Y H, WANG H X, et al. Improvement effects of vibration on cutting force in rotary ultrasonic machining of BK7 glass[J]. Journal of Materials Processing Technology, 2013, 213(9):1548-1557. [47] AHMED Y, CONG W L, STANCO M R, et al. Rotary ultrasonic machining of alumina dental ceramics:a preliminary experimental study on surface and subsurface damages[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2012, 134(6):064501. [48] ZHANG L C, ZARUDI I. Towards a deeper understanding of plastic deformation in mono-crystalline silicon[J]. International Journal of Mechanical Sciences, 2001, 43(9):1985-1996. [49] LIU X B, ZHANG B, DENG Z H. Grinding of nanostructured ceramic coatings:Surface observations and material removal mechanisms[J]. International Journal of Machine Tools&Manufacture, 2002, 42(15):1665-1676. [50] 范继美, 万光珉.位错理论及其在金属切削中的应用[M].上海:上海交通大学出版社, 1991.FAN Jimei, WAN Guangmin. Dislocation theory and its application in metal cutting[M]. Shanghai:Shanghai Jiaotong University Press, 1991. [51] ZHANG S H, LEGUT D, ZHANG R F. PNADIS:An automated Peierls-Nabarro analyzer for dislocation core structure and slip resistance[J]. Computer Physics Communications, 2019, 240:60-73. [52] KORTE S, BARNARD J S, STEAM R J, et al.Deformation of silicon-Insights from microcompression testing at 25-500 degrees C[J]. International Journal of Plasticity, 2011, 27(11):1853-1866. [53] XIE G Z, HUANG H. An experimental investigation of temperature in high speed deep grinding of partially stabilized zirconia[J]. International Journal of Machine Tools&Manufacture, 2008, 48(14):1562-1568. [54] PAUL S, CHATTOPADHYAY A B. Effects of cryogenic cooling by liquid-nitrogen jet on forces, temperature and surface residual-stresses in grinding steels[J]. Cryogenics, 1995, 35(8):515-523. [55] SINGH V, GHOSH S, RAO P V. Grindability Improvement of AlSiTi Conductive Ceramic[J]. Materials and Manufacturing Processes, 2012, 27(2):214-220. [56] LI Z P, ZHANG F H, LUO X C, et al. Material removal mechanism of laser-assisted grinding of RB-SiC ceramics and process optimization[J]. Journal of the European Ceramic Society, 2019, 39(4):705-717. [57] BOWMAN K J, PFEFFERKORN F E, SHIN Y C.Recrystallization textures during laser-assisted machining of zirconia ceramics[M]//LEE D N. Textures of Materials, Pts 1 and 2. 2002:1669-1674. [58] AZARHOUSHANG B, SOLTANI B, ZAHEDI A.Laser-assisted grinding of silicon nitride by picosecond laser[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(5-8):2517-2529. [59] MA Z L, WANG Z, WANG X Z, et al. Effects of laser-assisted grinding on surface integrity of zirconia ceramic[J]. Ceramics International, 2020, 46(1):921-929. [60] 余同希.工程材料及其力学行为[M].长沙:湖南教育出版社, 1992.YU Tongxi. Engineering materials and their mechanical behavior[M]. Changsha:Hunan Education Press, 1992. [61] STROH A N. The formation of cracks as a result of plastic flow[J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1954, 223(1154):404-414. [62] MEYERS M A, BENSON D J, VOHRINGER O, et al.Constitutive description of dynamic deformation:Physically-based mechanisms[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2002, 322(1-2):194-216. [63] ZHANG T, JIANG F, HUANG H, et al. Towards understanding the brittle-ductile transition in the extreme manufacturing[J]. International Journal of Extreme Manufacturing, 2021, 3(2):022001. [64] SIVARAMAKRISHNAN V. Predictive modeling for ductile machining of brittle materials[D]. Atlanta:Georgia Institute of Technology, 2007. [65] 李蓓智.高速高质量磨削:理论、工艺、装备与应用[M].上海:上海科学技术出版社, 2012.LI Beizhi. High speed and high quality grinding:Theory, technology, equipment and application[M]. Shanghai:Shanghai Science and Technology Press, 2012. [66] ASTAKHOV V P, XIAO X R. A methodology for practical cutting force evaluation based on the energy spent in the cutting system[J]. Machining Science and Technology, 2008, 12:325-347. [67] ASTAKHOV V P. Geometry of single-point turning tools and drills:Fundamentals and practical applications[M].London:Springer, 2010. [68] WOBKER H G. Schleifen keramischer werkstoffe[D].Hanover:University of Hanover, 1992. [69] 谢桂芝, 黄红武, 黄含, 等.工程陶瓷材料高效深磨的试验研究[J].机械工程学报, 2007, 43(1):176-184.XIE Guizhi, HUANG Hongwu, HUANG Han, et al.Experimental investigations of advanced ceramics in high efficiency deep grinding[J]. Journal of Mechanical Engineering, 2007, 43(1):176-184. [70] SALOMON C. Verfahren zur Bearbeitung von Metallen oder bei einer Bearbeitung durch schneidende Werkzeuge sichähnlich verhaltenden Werkstoffen:DE. 1931-04-27.SALOMON C. Methods for processing metals or materials that behave similarly when processed with cutting tools:DE, 1931-04-27. |