[1] LEI Yaguo, YANG Bin, JIANG Xinwei, et al. Applications of machine learning to machine fault diagnosis:A review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138:106587. [2] HOANG D J, KANG H J. A survey on deep learning based bearing fault diagnosis[J]. Neurocomputing, 2019, 335:327-335. [3] KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018, 107:241-265. [4] 雷亚国, 贾锋, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5):94-104. LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5):94-104. [5] LEI Yaguo. Intelligent fault diagnosis and remaining useful life prediction of rotating machinery[M]. Oxford:Elsevier Butterworth-Heinemann, 2016. [6] 雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7):1-8. LEI Yaguo, YANG Bin, DU Zhaojun, et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7):1-8. [7] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. [8] YAN Ruqiang, SHEN Fei, SUN C, et al. Knowledge transfer for rotary machine fault diagnosis[J]. IEEE Sensors Journal, 2020, 20(15):8374-8393. [9] KOUW M W, LOOG M. A review of domain adaptation without target labels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(3):766-785. [10] LI Chuan, ZHANG Shaohui, QIN Yi, et al. A systematic review of deep transfer learning for machinery fault diagnosis[J]. Neurocomputing, 2020, 407:121-135. [11] 郭亮, 董勋, 高宏力, 等. 无标签数据下基于特征知识迁移的机械设备智能故障诊断[J]. 仪器仪表学报, 2019, 40(8):58-64. GUO Liang, DONG Xun, GAO Hongli, et al. Feature knowledge transfer based intelligent fault diagnosis method of machines with unlabeled data[J]. Chinese Journal of Scientific Instrument, 2019, 40(8):58-64. [12] AZAMFAR M, LI Xiang, LEE J. Intelligent ball screw fault diagnosis using a deep domain adaptation methodology[J]. Mechanism and Machine Theory, 2020, 151:103932. [13] MICHAU G, FINK O. Unsupervised transfer learning for anomaly detection:Application to complementary operating condition transfer[J]. Knowledge-Based Systems, 2021, 216:106816. [14] 曾益新, 张晓实, 刘强. 分子靶向治疗:肿瘤治疗的里程碑[J]. 癌症, 2008, 27(8):785-787. ZENG Yixin, ZHANG Xiaoshi, LIU Qiang. Molecular target therapy:A milestone on the road for curing cancer[J]. Chinese Journal of Cancer, 2008, 27(8):785-787. [15] LONG Mingsheng, WANG Jianmin, DING Guiguang, et al. Transfer feature learning with joint distribution adaptation[C]//IEEE International Conference on Computer Vision in Sydney, Australia, December 1-8, 2013. USA:IEEE, 2013:2200-2207. [16] LEE D H. Pseudo-label:The simple and efficient semi-supervised learning method for deep neural networks[C/CD]//The Thirtieth International Conference on Machine Learning Workshop on Challenges in Representation Learning in Atlanta, Georgia, USA, June 16-21, 2013. [17] RUBNER Y, TOMASI C, GUIBAS L J. The earth mover's distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40(2):99-121. [18] PEYRÉ G, CUTURI M. Computational optimal transport:With applications to data science[J]. Foundations and Trends in Machine Learning, 2019, 11(5-6):355-607. [19] TZENG E, HOFFMAN J, ZHANG Ning, et al. Deep domain confusion:Maximizing for domain invariance[J]. arXiv preprint arXiv:1412.3474, 2014. [20] RAMDAS A, REDDI S, Póczos B, et al. On the decreasing power of kernel and distance based nonparametric hypothesis tests in high dimensions[C]//The Twenty-Ninth AAAI Conference on Artificial Intelligence in Austin, Texas, USA, 2015:3571-3577. |