• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (12): 1-9.doi: 10.3901/JME.2022.12.001

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

跨设备的机械故障靶向迁移诊断方法

雷亚国, 杨彬, 李乃鹏, 李响, 武通海   

  1. 西安交通大学现代设计及转子轴承系统教育部重点实验室 西安 710049
  • 收稿日期:2021-12-23 修回日期:2022-02-22 出版日期:2022-06-20 发布日期:2022-09-14
  • 通讯作者: 雷亚国(通信作者),男,1979年出生,博士,教授,博士研究生导师。主要研究方向为大数据智能故障诊断与寿命预测、机械状态健康监测与智能维护、机械系统建模与动态信号处理。E-mail:yaguolei@mail.xjtu.edu.cn
  • 基金资助:
    国家杰出青年科学基金(52025056)、国家自然科学基金(52005387)和中央高校基本科研业务费专项资金资助项目

Targeted Transfer Diagnosis Method across Different Machines

LEI Yaguo, YANG Bin, LI Naipeng, LI Xiang, WU Tonghai   

  1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049
  • Received:2021-12-23 Revised:2022-02-22 Online:2022-06-20 Published:2022-09-14

摘要: 机械故障迁移诊断运用已学习到的设备(源域)诊断知识解决相关设备(目标域)的诊断问题,可望克服大数据下标签数据稀缺、故障信息不全的智能诊断难题。为有效地跨域迁移故障诊断知识,使智能诊断模型能够在不同设备间迁移应用,现有研究要求目标域的数据标签空间相对源域的偏移较小,且两者相互对称,这在跨设备迁移诊断中难以满足,降低了智能诊断模型的迁移诊断精度。受“靶向治疗”基本原理启发,提出机械故障靶向迁移诊断方法。首先建立领域共享的深度卷积网络,将源域与目标域的数据映射到深层特征空间;然后设置目标域中极少量的标签数据为制导锚点,并根据制导锚点与源域数据的标签对应关系确定深层特征空间中的靶向区域;最后规划目标域数据向靶向区域移动的制导轨迹,进而基于最优传输理论适配深层特征的局部分布。通过不同设备之间的轴承故障迁移诊断试验对提出方法进行验证,结果表明:提出方法能够定向适配深层特征的局部分布,提高了智能诊断模型在不同设备间的轴承故障迁移诊断精度。

关键词: 机械设备, 靶向迁移, 故障智能诊断, 深度迁移学习

Abstract: Transfer fault diagnosis applies diagnosis knowledge of well-studied machines (the source domain) to solve the diagnosis issues of other related machines (the target domain), which is promising to overcome difficulties in collecting sufficient labeled data with respect to the big-data era. For a successful knowledge transfer across different machines, existing methods assume that the target label space is subject to a small shift and the symmetric basis to that of the source. However, the assumption is strict for the transfer diagnosis tasks across different machines, resulting in low diagnosis accuracy. Inspired by the principle of the targeted therapy, a targeted transfer diagnosis method is proposed to transfer knowledge across different machines. A domain-shared deep convolutional network is first constructed to map the source and target data into the feature space. After that, the limited number of labeled data in the target is set as anchors to indicate the targeted feature space region based on the relevance of their labels with the source domain. Finally, unlabeled target data are moved towards the targeted region along trajectories of the targeted anchors, which adapts partial distributions across domains by the optimal transport. The proposed method is verified by the transfer diagnosis tasks across different bearings. The results show that the proposed method can directionally adapt the feature partial distribution so as to improve the diagnosis accuracy when the intelligent diagnosis model is transferred across different machines.

Key words: machinery, targeted transfer, intelligent fault diagnosis, deep transfer learning

中图分类号: