• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (13): 22-35.doi: 10.3901/JME.2022.13.022

• 机器人及机构学 • 上一篇    下一篇

扫码分享

基于活性生物组织的肌肉驱动机器人研究进展

林泽宁, 蒋涛, 罗自荣, 白向娟, 尚建忠   

  1. 国防科技大学智能科学学院 长沙 410073
  • 收稿日期:2021-07-17 修回日期:2021-11-14 出版日期:2022-07-05 发布日期:2022-09-13
  • 通讯作者: 尚建忠(通信作者),男,1966年出生,博士,教授,博士研究生导师。主要研究方向为机器人与仿生机械,智能无人系统平台与动力。E-mail:jz_shang_nudt@163.com
  • 作者简介:林泽宁,男,1997年出生。主要研究方向为仿生与软体机器人技术,生物柔性机器人。E-mail:linzening@nudt.edu.cn;蒋涛,男,1989年出生,博士,讲师。主要研究方向为生物3D打印,生物柔性机器人,智能无人系统平台与动力。E-mail:jiangtao@nudt.edu.cn;罗自荣,男,1974年出生,博士,教授,博士研究所导师。主要研究方向为智能无人系统平台与动力,水陆两栖机器人。E-mail:luozirong@nudt.edu.cn
  • 基金资助:
    2019博士后国际交流计划引进(博士后编号48127)、湖南省科技创新计划资助——省优秀博士后创新人才计划(2020RC2036)、国防科技大学学校科研计划(zk-19)和湖南省研究生科研创新(CX20190030)资助项目。

Research Progress of Muscle-driven Robots Based on Living Tissue

LIN Zening, JIANG Tao, LUO Zirong, BAI Xiangjuan, SHANG Jianzhong   

  1. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073
  • Received:2021-07-17 Revised:2021-11-14 Online:2022-07-05 Published:2022-09-13

摘要: 基于活性生物组织的肌肉驱动机器人由活细胞与传统机电系统深度融合,在毫米尺度下相比于传统的刚性驱动机器人及新兴的非生物柔性材料驱动具备微尺度、功率密度高、生物相容性等优点。因此,它们可在生物医学、战场侦察等领域发挥重大作用,引起了科学家们的广泛兴趣。为使更多研究人员了解肌肉驱动机器人的研究进展、潜在的应用、面临的挑战及解决措施,将对其进行总结讨论。首先,对活细胞来源的肌肉组织结构及驱动机理进行叙述。以此为基础,对由活细胞与非生物柔性材料所构成的人工生物肌肉驱动机器人及由活体直接得到的真实生物肌肉驱动机器人两种设计思路进行归纳,并对肌肉驱动机器人的不同控制策略及其优缺点进行系统总结。最后,对其潜在应用及所面临的主要挑战进行讨论与总结,并提出相应的可能解决方案,可为后续肌肉驱动机器人的发展与性能提升提供指导。

关键词: 肌肉驱动机器人, 微尺度, 驱动机理, 控制策略

Abstract: A muscle-driven robot based on living tissues is deeply integrated with the traditional electromechanical system. Compared with the traditional rigid and the non-biological flexible material driving robot at millimeter scale, muscle-driven robots have the advantages of micro-scale, high power density, biocompatibility, etc. Therefore, they can play an important role in biomedicine, battlefield reconnaissance and other fields, which have attracted widespread interest globally. The current research progress, potential applications, challenges and solutions of muscle-driven robots will be summarized and discussed here. Firstly, the muscle tissue structure and stress mechanism of living cells were described. On this basis, two design ideas of artificial biological muscle-driven robot composed of living cells and non-biological flexible materials and real biological muscle-driven robot directly obtained from living body are summarized. The different control strategies of muscle-driven robots and their advantages and disadvantages are systematically summarized. Finally, its potential application and the main challenges it encounters are discussed and summarized, and the corresponding possible solutions are suggested, which can provide guidance for the development and performance improvements of the follow-up muscle-driven robots.

Key words: muscle-driven robot, microscale, driving mechanism, control strategies

中图分类号: