[1] HU A,JANCZAK-RUSCH J,SANO T. Joining technology innovations at the macro,micro,and nano levels[J]. Applied Sciences (Switzerland),2019,9(17):1-9. [2] 张丹. 微电子制造和封装技术发展研究[J]. 科技创新导报,2019,16(27):70-71. ZHANG Dan. Advances in microelectronics fabrication and packaging technology[J]. Science and Technology Innovation Herald,2019,16(27):70-71. [3] 李旬,王敏,华学明,等. 平行间隙电阻焊微连接技术研究进展[J]. 焊接,2020(7):1-5,18,61. LI Xun,WANG Min,HUA Xueming,et al. Research progress on parallel gap resistance welding micro-connection technology[J]. Welding & Joining,2020(7):1-5,18,61. [4] 邹贵生,闫剑锋,母凤文,等. 微连接和纳连接的研究新进展[J]. 焊接学报,2011,32(4):107-112,118. ZOU Guisheng,YAN Jianfeng,MU Fengwen,et al. Recent progress in micro-joining and nano-joining[J]. Transactions of The China Welding Institute,2011,32(4):107-112,118. [5] 马秋晨,潘浩,张文武,等. 面向电子制造的功率超声微纳连接技术进展[J]. 精密成形工程,2020,12(4):21-36. MA Qiuchen,PAN Hao,ZHANG Wenwu,et al. Progress of power ultrasonic micro-nano joining technology for electronic manufacturing[J]. Journal of Netshape Forming Engineering,2020,12(4):21-36. [6] 王尚,田艳红. 微纳连接技术研究进展[J]. 材料科学与工艺,2017,25(5):1-5. WANG Shang,TIAN Yanhong. The state of art on the micro-joining and nano-joining technologies[J]. Materials Science & Technology,2017,25(5):1-5. [7] 陈秀梅. 材料常温连接新技术[J]. 新技术新工艺,1994(6):27-28,30. CHEN Xiumei. New technology of materials interconnection at room temperature[J]. New Technology & New Process,1994(6):27-28,30. [8] XU J,WANG C,JI X,et al. Direct bonding of high dielectric oxides for high-performance transistor applications[J]. Scripta Materialia,2020,178:307-312. [9] HE R,FUJINO M,YAMAUCHI A,et al. Combined surface activated bonding technique for low-temperature Cu/dielectric hybrid bonding[J]. ECS Journal of Solid State Science and Technology,2016,5(7):419-424. [10] 林晓辉,史铁林,廖广兰,等. 紫外光辐射在硅片表面活化键合中的应用[J]. 功能材料与器件学报,2008(2):353-357. LIN Xiaohui,SHI Tielin,LIAO Guanglan,et al. Application of UV radiation in silicon wafer surface activation bonding[J]. Journal of Functional Materials and Devices,2008(2):353-357. [11] 聂磊,钟毓宁,张业鹏,等. 硅圆片多层直接键合工艺研究[J]. 半导体光电,2011,32(6):800-802,843. NIE Lei,ZHONG Yuning,ZHANG Yepeng,et al. Research on multilayer direct bonding technology for silicon wafer[J]. Semiconductor Optoelectronics,2011,32(6):800-802,843. [12] 胡贤巧,何巧红,白泽清,等. 聚二甲基硅氧烷-聚苯乙烯复合微流控芯片室温不可逆封合法的研究[J]. 化学学报,2013,71(11):1535-1539. HU Xianqiao,HE Qiaohong,BAI Zeqing,et al. An approach for irreversible bonding of PDMS-PS hybrid microfluidic chips at room temperature[J]. Acta Chimica Sinica,2013,71(11):1535-1539. [13] EMANUEL N,BUCHACHENKO A. Chemical physics of polymer degradation and stabilization[M]. Utrecht:VNU Science Press,1987. [14] 夏永. 紫外光辅助碳化硅化学机械抛光机理研究[D]. 无锡:江南大学,2020. XIA Yong. Research on chemical mechanical polishing mechanism of UV-assisted silicon carbide[D]. Wuxi:Jiangnan University,2020. [15] VIG J. UV/ozone cleaning of surfaces[J]. Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1985,3(3):1027-1034. [16] BHATTACHARYYA A,KLAPPERICH C M. Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices[J]. Lab on a Chip,2007,7(7):876-882. [17] KANO S,YANG H,MCGRADY J,et al. Investigation of radiation-induced surface activation effect in austenitic stainless steel under ultraviolet and γ-ray irradiations[J]. Journal of Nuclear Science and Technology,2019,56(3):300-309. [18] YANG H W,KAO C R,SHIGETOU A. Fast atom beam- and vacuum-ultraviolet-activated sites for low-temperature hybrid integration[J]. Langmuir,2017,33(34):8413-8419. [19] GIRÃO A F,WIERINGA P,PINTO S C,et al. Ultraviolet functionalization of electrospun scaffolds to activate fibrous runways for targeting cell adhesion[J]. Frontiers in Bioengineering and Biotechnology,2019,7(7):159-168. [20] 刘艳南. 基于真空紫外光表面活化的硅基晶圆低温直接键合研究[D]. 哈尔滨:哈尔滨工业大学,2017. LIU Yannan. Study on low-temperature direct bonding of Si-based wafers using vacuum ultraviolet surface activation[D]. Harbin:Harbin Institute of Technology,2017. [21] TANG Z,PENG P,SHI T,et al. Effect of nanoscale surface topography on low temperature direct wafer bonding process with UV activation[J]. Sensors and Actuators,A:Physical,2009,151(1):81-86. [22] TURNER K T,SPEARING S M,BAYLIES W A,et al. Effect of nanotopography in direct wafer bonding:Modeling and measurements[J]. IEEE Transactions on Semiconductor Manufacturing,2005,18(2):289-296. [23] 王源. 基于真空紫外光表面活化的碳化硅晶圆低温直接键合研究[D]. 哈尔滨:哈尔滨工业大学,2018. WANG Yuan. Low-temperature direct bonding of SiC wafers via vacuum ultraviolet surface activation[D]. Harbin:Harbin Institute of Technology,2018. [24] HOLL S L,COLINGE C A,HOBART K D,et al. UV activation treatment for hydrophobic wafer bonding[J]. Journal of The Electrochemical Society,2006,153(7):613-616. [25] LIN X,SHI T,LIAO G,et al. UV enhanced low temperature wafer direct bonding and interface quality test[C]//7th IEEE International Conference on Nanotechnology-IEEE-NANO 2007,Proceedings,2007,2:754-758. [26] MALIK R,SHI T,TANG Z,et al. Effect of ultra violet process and annealing on reliability in low temperature silicon wafer direct bonding[J]. Advanced Science Letters,2011,4(3):774-780. [27] LIAO G,ZHANG X,LIN X,et al. Ultraviolet exposure enhanced silicon direct bonding[J]. Frontiers of Mechanical Engineering in China,2010,5(1):87-92. [28] FAN J,CHONG G Y,TAN C S. Study of hydrophilic Si direct bonding with ultraviolet ozone activation for 3D integration[J]. ECS Journal of Solid State Science and Technology,2012,1(6):291-296. [29] WANG C,XU J,QI X,et al. Direct homo/heterogeneous bonding of silicon and glass using vacuum ultraviolet irradiation in air[J]. Journal of The Electrochemical Society,2018,165(4):3093-3098. [30] XU J,WANG C,WANG T,et al. Mechanisms for low-temperature direct bonding of Si/Si and quartz/quartz:Via VUV/O3 activation[J]. RSC Advances,2018,8(21):11528-11535. [31] XU J,WANG C,WANG T,et al. Direct bonding of silicon and quartz glass using VUV/O3 activation and a multistep low-temperature annealing process[J]. Applied Surface Science,2018,453:416-422. [32] WANG C,XU J,GUO S,et al. A facile method for direct bonding of single-crystalline SiC to Si,SiO2,and glass using VUV irradiation[J]. Applied Surface Science,2019,471:196-204. [33] XU J,WANG C,LI D,et al. Fabrication of SiC/Si,SiC/SiO2,and SiC/glass heterostructures via VUV/O3 activated direct bonding at low temperature[J]. Ceramics International,2019,45(3):4094-4098. [34] TONG Q Y. Room temperature metal direct bonding[J]. Applied Physics Letters,2006,89(18):182101. [35] KANEDA T,MIZUNO J,OKADA A,et al. Improved low temperature gold-gold bonding using nanoporous powder bump using vacuum ultraviolet irradiation pre-treatment[C]//International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC),2015:473-477. [36] SHIGETOU A,MANO A,MIZINO J,et al. UV/vapor-assisted hybrid bonding technology as a tool for future nanopackaging[C]//IEEE International Conference on Nanotechnology (IEEE-NANO). IEEE,2012:1-5. [37] JACKSON M J,JACKSON B L,GOORSKY M S. Investigation of sulfur passivation treatments for direct wafer bonding of III-V materials[J]. ECS Transactions,2010,33(4):375-382. [38] JACKSON M J,CHEN L M,KUMAR A,et al. Low-temperature III-V direct wafer bonding surface preparation using a UV-sulfur process[J]. Journal of Electronic Materials,2011,40(1):1-5. [39] XU J,WANG C,WU B,et al. Communication- Defect-free direct bonding for high-performance glass-on- LiNbO3 devices[J]. Journal of the Electrochemical Society,2018,165(14):727-729. [40] XU J,WANG C,ZHANG R,et al. VUV/O3 activated direct heterogeneous bonding towards high-performance LiNbO3-based optical devices[J]. Applied Surface Science,2019,495:1-11. [41] YOKOI H,SASAKI K. Optical isolator with Si guiding layer fabricated by UV-activated bonding[J]. ECS Transactions,2019,16(8):155-161. [42] ANANTHA P,TAN C S. UV/O3 assisted InP/Al2O3-Al2O3/Si low temperature die to wafer bonding[J]. Microsystem Technologies,2015,21(5):1015-1020. [43] HASHIMOTO Y,MOGI K,YAMAMOTO T. Vacuum ultraviolet light assisted bonding and nanoscale pattern transfer method for polydimethylsiloxane[J]. Microelectronic Engineering,2017,176:116-120. [44] HASHIMOTO Y,YAMAMOTO T. Fabrication of an anti-reflective and super-hydrophobic structure by vacuum ultraviolet light-assisted bonding and nanoscale pattern transfer[J]. Micromachines,2018,9(4):186-196. [45] TSAO C W,DEVOE D L. Bonding of thermoplastic polymer microfluidics[J]. Microfluidics and Nanofluidics,2009,6(1):1-16. [46] RENBERG B,SATO K,TSUKAHARA T,et al. Hands on:Thermal bonding of nano- and microfluidic chips[J]. Microchimica Acta,2009,166(1-2):177-181. [47] SABOURIN D,PETERSEN J,SNAKENBORG D,et al. Microfluidic DNA microarrays in PMMA chips:Streamlined fabrication via simultaneous DNA immobilization and bonding activation by brief UV exposure[J]. Biomedical Microdevices,2010,12(4):673-681. [48] TRAN H H,WU W,LEE N Y. Ethanol and UV-assisted instantaneous bonding of PMMA assemblies and tuning in bonding reversibility[J]. Sensors and Actuators B:Chemical,2013,181:955-962. [49] SHINOHARA H,MIZUNO J,SHOJI S. Studies on low-temperature direct bonding of VUV,VUV/O3 and O2 plasma pretreated cyclo-olefin polymer[J]. Sensors and Actuators A:Physical,2011,165(1):124-131. [50] GONDA M,UTSUNOMIYA T,ICHII T,et al. Room temperature bonding of cycloolefin polymer by vacuum ultraviolet surface photoactivation[J]. International Journal of Adhesion and Adhesives,2020,100:102604. [51] HORIUCHI S,HAKUKAWA H,KIM Y J,et al. Study of the adhesion and interface of the low-temperature bonding of vacuum ultraviolet-irradiated cyclo-olefin polymer using electron microscopy[J]. Polymer Journal,2016,48(4):473-479. [52] GLEICHWEIT E,BAUMGARTNER C,DIETHARDT R,et al. UV/Ozone surface treatment for bonding of elastomeric COC-based microfluidic devices[J]. Proceedings,2018,2(13):943-947. [53] ARIKAN E,HOLTMANNSPÖTTER J,HOFMANN T,et al. Vacuum-UV of polyetheretherketone (PEEK) as a surface pre-treatment for structural adhesive bonding[J]. Journal of Adhesion,2020,96(10):917-944. [54] WANG C,QI X,WANG Y,et al. Room-temperature direct heterogeneous bonding of glass and polystyrene substrates[J]. Journal of the Electrochemical Society,2018,165(8):3091-3097. [55] QI X,WANG C,KANG Q,et al. Room-temperature bonding and debonding of glass and polystyrene substrates based on VUV/O3 activated bonding method[C]//International Conference on Electronic Packaging Technology (ICEPT). IEEE,2018:1453-1456. [56] HASHIMOTO Y,YAMAMOTO T. Solid state direct bonding of polymers by vacuum ultraviolet light below 160 nm[J]. Applied Surface Science,2017,419:319-327. [57] WANG C,FANG H,QI X,et al. Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation[J]. Acta Biomaterialia,2019,91:99-111. [58] YANG T H,KAO C R,SHIGETOU A. Organic-inorganic solid-state hybridization with high-strength and anti-hydrolysis interface[J]. Scientific Reports,2019,9(1):1-12. [59] YANG T H,YANG C Y,SHIGETOU A,et al. A single process for homogeneous and heterogeneous bonding in flexible electronics:Ethanol-assisted vacuum ultraviolet (E-VUV) irradiation process[C]//International Conference on Electronics Packaging,Japan Institute of Electronics Packaging,2019:117-122. [60] YANG T H,CHIU Y S,YANG C Y,et al. Polyimide-polyetheretherketone and tin-polyimide direct bonding via ethanol-assisted vacuum ultraviolet irradiation[J]. Transactions of The Japan Institute of Electronics Packaging,2019,12:19-012-1-19-012-8. [61] MAEDA K,NITANI M,UNO M. Thermocompression bonding of conductive polymers for electrical connections in organic electronics[J]. Polymer Journal,2020,52(4):405-412. [62] QUAN D,DEEGAN B,BYRNE L,et al. Rapid surface activation of carbon fibre reinforced PEEK and PPS composites by high-power UV-irradiation for the adhesive joining of dissimilar materials[J]. Composites Part A:Applied Science and Manufacturing,2020,137:105976. |