机械工程学报 ›› 2021, Vol. 57 ›› Issue (24): 166-183.doi: 10.3901/JME.2021.24.166
杨洋1,2, 褚志刚1
收稿日期:
2021-03-11
修回日期:
2021-09-02
出版日期:
2021-12-20
发布日期:
2022-02-28
通讯作者:
褚志刚(通信作者),男,1978年出生,博士,教授,博士研究生导师。主要研究方向为振动噪声测量分析技术、噪声源识别技术理论及其应用、工程信号处理。E-mail:zgchu@cqu.edu.cn
作者简介:
杨洋,女,1988年出生,博士研究生。主要研究方向为噪声源识别技术理论及其应用、工程信号处理。E-mail:yangyang911127@cqu.edu.com
基金资助:
YANG Yang1,2, CHU Zhigang1
Received:
2021-03-11
Revised:
2021-09-02
Online:
2021-12-20
Published:
2022-02-28
摘要: 基于传声器阵列测量的波束形成声源识别技术广泛应用于军事、工业、环境等领域。围绕“空间分辨能力增强、寄生虚假声源抑制、定位定量精度提升、鲁棒稳健性能强化、声源识别功能完善”的目标,国内外学者开展了大量研究工作并取得了丰硕成果,反卷积波束形成、函数型波束形成和压缩波束形成三类典型高性能方法先后被提出。为帮助国内学者全面了解三类高性能波束形成方法并加以推广应用,系统阐述其核心思想,全面综述其重要研究进展,根据需要计算的阵列点传播函数的数目对反卷积波束形成进行科学分类,根据采用的网格点类型对压缩波束形成进行科学分类。综述同时涵盖适宜识别阵列前方局部区域内声源的平面传声器阵列和适宜360°全景识别声源的球面传声器阵列。
中图分类号:
杨洋, 褚志刚. 高性能波束形成声源识别方法研究综述[J]. 机械工程学报, 2021, 57(24): 166-183.
YANG Yang, CHU Zhigang. A Review of High-performance Beamforming Methods for Acoustic Source Identification[J]. Journal of Mechanical Engineering, 2021, 57(24): 166-183.
[1] JOHNSON D H,DUDGEON D E. Array signal processing:Concepts and techniques[M]. New Jersey:Prentice Hall,1993. [2] VAN TREES H L. Detection,estimation,and modulation theory,Part IV:Optimum array processing[M]. New York:John Wiley & Sons Inc.,2002. [3] CHIARIOTTI P,MARTARELLI M,CASTELLINI P. Acoustic beamforming for noise source localization:Reviews,methodology and applications[J]. Mechanical Systems and Signal Processing,2019,120:422-448. [4] MERINO-MARTINEZ R,SIJTSMA P,SNELLEN M,et al. A review of acoustic imaging methods using phased microphone arrays[J]. CEAS Aeronautical Journal,2019,10:197-230. [5] GINN K B,HADDAD K. Noise source identification techniques:Simple to advanced applications[C]//Proceedings of the Acoustics 2012 Nantes Conference,23-27 April 2012,Nantes,France. Hal-00810618,2012:1781-1786. [6] MICHEL U. History of acoustic beamforming[C]//Proceedings on CD of the 1st Berlin Beamforming Conference,21-22 November 2006,Berlin,Germany. BeBeC-2006-01. [7] 褚志刚,杨洋,倪计民,等. 波束形成声源识别技术研究进展[J]. 声学技术,2013,32(5):430-435. CHU Zhigang,YANG Yang,NI Jimin,et al. Review of beamforming based sound source identification techniques[J]. Technical Acoustics,2013,32(5):430-435. [8] GUIDATI S. Advanced beamforming techniques in vehicle acoustic[C/CD]//Proceedings on CD of the 3rd Berlin Beamforming Conference,24-25 February 2010,Berlin,Germany. BeBeC-2010-04. [9] 杨洋,倪计民,褚志刚,等. 基于互谱成像函数波束形成的发动机噪声源识别[J]. 内燃机工程,2012,33(3):82-87. YANG Yang,NI Jimin,CHU Zhigang,et al. Engine noise source identification based on cross-spectra imaging function beam-forming[J]. Chinese Internal Combustion Engine Engineering,2012,33(3):82-87. [10] 王子腾,杨殿阁,李兵,等. 运动汽车噪声的可视化测量方法比较研究[J]. 振动工程学报,2011,24(5):578-584. WANG Ziteng,YANG Diange,LI Bing,et al. Comparative study of methods for moving vehicles noise measurement and visualization[J]. Journal of Vibration Engineering,2011,24(5):578-584. [11] 褚志刚,杨洋,王卫东,等. 基于波束形成方法的货车车外加速噪声声源识别[J]. 振动与冲击,2012,31(7):66-70. CHU Zhigang,YANG Yang,WANG Weidong,et al. Identification of truck noise sources under passby condition based on wave beamforming method[J]. Journal of Vibration and Shock,2012,31(7):66-70. [12] GADE S,HALD J,GOMES J,et al. Recent advances in moving-source beamforming[J]. Sound and Vibration,2015,49(4):8-14. [13] BALLESTEROS J A,SARRADJ E,FERNANDEZ M D,et al. Noise source identification with beamforming in the pass-by of a car[J]. Applied Acoustics,2015,93:106-119. [14] ZHANG J,SQUICCIARINI G,THOMPSON D J. Implications of the directivity of railway noise sources for their quantification using conventional beamforming[J]. Journal of Sound and Vibration,2019,459:114841. [15] 乔渭阳,MICHEL U. 二维传声器阵列测量技术及其对飞机进场着陆过程噪声的实验研究[J]. 声学学报,2001,26(2):161-168. QIAO Weiyang,MICHEL U. A study on landing aircraft noise based on the fly-over measurements with a planar microphone array[J]. Acta Acustica,2001,26(2):161-168. [16] 陈涛,侯红,陈志菲,等. ARJ21客机降落阶段起落架噪声试验研究[J]. 声学学报,2013,38(5):615-623. CHEN Tao,HOU Hong,CHEN Zhifei,et al. Landing gear noise identification in the ARJ21 aircraft landing process[J]. Acta Acustica,2013,38(5):615-623. [17] HADDAD K. Noise source identification with a spherical microphone array:Application to a realistic environment[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings,23-26 August 2009,Ottawa,Canada. InterNoise,2009:1582-1591. [18] HADDAD K. Conformal mapping based on spherical array measurements:Noise source identification in a car cabin[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings,19-21 April 2010,Baltimore,Maryland,USA. NoiseCon,2010:563-571. [19] MASSAROTTI M,RIBEIRO Y,CALÇADA M. Using spherical beamforming to evaluate wind noise paths[C]//SAE Brasil International Noise and Vibration Colloquium 2014,04-05 November 2014,Sao Paulo,Brasil. SAE Technical Paper:2014-36-0791. [20] BATTISTA G,CHIARIOTTI P,CASTELLINI P. Spherical harmonics decomposition in inverse acoustic methods involving spherical arrays[J]. Journal of Sound and Vibration,2018,433:425-460. [21] CHRISTENSEN J J,HALD J. Improvements of cross spectral beamforming[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings,25-28 August 2003,Seogwipo,Korea. InterNoise,2003:2652-2659. [22] HALD J,CHRISTENSEN J J. Technical review beamforming[J]. Measurement,2004,12(1):15-28. [23] YARDIBI T,BAHR C,ZAWODNY N,et al. Uncertainty analysis of the standard delay-and-sum beamformer and array calibration[J]. Journal of Sound and Vibration,2010,329(13):2654-2682. [24] 褚志刚,杨洋. 基于波束形成缩放声强的声源局部声功率计算[J]. 声学学报,2013,38(3):265-271. CHU Zhigang,YANG Yang. Calculation of the partial area sound power based on the scaled beamforming sound intensity[J]. Acta Acustica,2013,38(3):265-271. [25] MEYER J,ELKO G. A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield[C]//2002 IEEE International Conference on Acoustics,Speech,and Signal Processing (ICASSP),13-17 May 2002,Orlando,Florida,USA. ICASSP,2002:1781-1784. [26] RAFAELY B. Plane-wave decomposition of the sound field on a sphere by spherical convolution[J]. Journal of the Acoustical Society of America,2004,116(4):2149-2157. [27] PARK M,RAFAELY B. Sound-field analysis by plane-wave decomposition using spherical microphone array[J]. Journal of the Acoustical Society of America,2005,118(5):3094-3103. [28] HADDAD K,HALD J. 3D localization of acoustic sources with a spherical array[C]//7th European Conference on Noise Control 2008,29 June-4 July 2008,Pairs,France. EuroNoise,2008:1585-1590. [29] RAFAELY B. Analysis and design of spherical microphone arrays[J]. IEEE Transactions on Speech and Audio Processing,2005,13(1):135-143. [30] 褚志刚,杨洋,贺岩松,等. 球谐函数波束形成声源识别扩展方法[J]. 机械工程学报,2015,51(20):45-53. CHU Zhigang,YANG Yang,HE Yansong,et al. Extension method of spherical harmonics beamforming for sound source identification[J]. Journal of Mechanical Engineering,2015,51(20):45-53. [31] RAFAELY B. Fundamentals of spherical array processing[M]. Berlin:Springer-Verlag,2015. [32] BROOKS T F,HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of Sound and Vibration,2006,294(4-5):856-879. [33] BROOKS T F,HUMPHREYS W M. Three-dimensional applications of DAMAS methodology for aeroacoustic noise source definition[C/CD]//Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference,23-25 May 2005,Monterey,California,USA. AIAA-2005-2960. [34] BROOKS T F,HUMPHREYS W M. Extension of DAMAS phased array processing for spatial coherence determination (DAMAS-C)[C/CD]//Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference,8-10 May 2006,Cambridge,Massachusetts,USA. AIAA-2006-2654. [35] DOUGHERTY R P. Extensions of DAMAS and benefits and limitations of deconvolution in beamforming[C/CD]//Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference,23-25 May 2005,Monterey,California,USA. AIAA-2005-2961. [36] LAWSON C L,HANSON R J. Solving least squares problems[M]. Englewood Cliffs:Prentice Hall,1974. [37] RICHARDSON W H. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America,1972,62(1):55-59. [38] LUCY L B. Iterative technique for rectification of observed distributions[J]. Astronomical Journal,1974,79(6):745-754. [39] EHRENFRIED K,KOOP L. Comparison of iterative deconvolution algorithms for the mapping of acoustic sources[J]. AIAA Journal,2007,45(7):1584-1595. [40] HOGBOM J A. Aperture synthesis with a non-regular distribution of interferometer baselines[J]. Astronomy and Astrophysics Supplement Series,1974,15(3):417-426. [41] SCHWARZ U J. Mathematical-statistical description of iterative beam removing technique (Method CLEAN)[J]. Astronomy and Astrophysics,1978,65(3):345-356. [42] SIJTSMA P. Clean based on spatial source coherence[J]. International Journal of Aeroacoustics,2007,6(4):357-374. [43] DOUGHERTY R P,PODBOY G. Improved phased array imaging of a model jet[C/CD]//Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference,11-13 May 2009,Miami,Florida,USA. AIAA-2009-3186. [44] COUSSON R,LECLERE Q,PALLAS M A,et al. A time domain CLEAN approach for the identification of acoustic moving sources[J]. Journal of Sound and Vibration,2019,443:47-62. [45] SIJTSMA P,SNELLEN M. High-resolution CLEAN-SC[C/CD]//Proceedings on CD of the 6th Berlin Beamforming Conference,29 February-1 March 2016,Berlin,Germany. BeBeC-2016-S1. [46] SIJTSMA P,MERINO-MARTINEZ R,MALGOEZAR A M N,et al. High-resolution CLEAN-SC:Theory and experimental validation[J]. International Journal of Aeroacoustics,2017,16(4-5):274-298. [47] LUESUTTHIVIBOON S,MALGOEZAR A M N,MERINO-MARTINEZ R,et al. Enhanced HR-CLEAN-SC for resolving multiple closely spaced sound sources[J]. International Journal of Aeroacoustics,2019,18(4-5):392-413. [48] MERINO-MARTINEZ R,LUESUTTHIVIBOON S,ZAMPONI R,et al. Assessment of the accuracy of microphone array methods for aeroacoustic measurements[J]. Journal of Sound and Vibration,2020,470:115176. [49] 褚志刚,余立超,杨洋,等. CLEAN-SC波束形成声源识别改进[J]. 振动与冲击,2019,38(15):87-94. CHU Zhigang,YU Lichao,YANG Yang,et al. Improved acoustic source identification based on CLEAN-SC beam forming[J]. Journal of Vibration and Shock,2019,38(15):87-94. [50] YARDIBI T,LI J,STOICA P,et al. Sparsity constrained deconvolution approaches for acoustic source mapping[J]. Journal of the Acoustical Society of America,2008,123(5):2631-2642. [51] CHU N,PICHERAL J,MOHAMMAD-DJAFARI A,et al. A robust super-resolution approach with sparsity constraint in acoustic imaging[J]. Applied Acoustics,2014,76:197-208. [52] LI X,TONG W,JIANG M. Sound source localization via elastic net regularization[C/CD]//Proceedings on CD of the 5th Berlin Beamforming Conference,19-20 February 2014,Berlin,Germany. BeBeC-2014-02. [53] BAI B,LI X. Acoustic sources mapping based on the non-negative L1/2 regularization[J]. Applied Acoustics,2020,169:107456. [54] DOUGHERTY R P,RAMACHANDRAN R C,RAMAN G. Deconvolution of sources in aeroacoustic images from phased microphone arrays using linear programming[J]. International Journal of Aeroacoustics,2013,12(7-8):699-717. [55] BECK A,TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences,2009,2(1):183-202. [56] LYLLOFF O,FERNANDEZ-GRANDE E,AGERKVIST F,et al. Improving the efficiency of deconvolution algorithms for sound source localization[J]. Journal of the Acoustical Society of America,2015,138(1):172-180. [57] SHEN L,CHU Z,TAN L,et al. Improving the sound source identification performance of sparsity constrained deconvolution beamforming utilizing SFISTA[J]. Shock and Vibration,2020,2020:1482812. [58] PADOIS T,BERRY A. Orthogonal matching pursuit applied to the deconvolution approach for the mapping of acoustic sources inverse problem[J]. Journal of the Acoustical Society of America,2015,138(6):3678-3685. [59] BERGH T F. Deconvolution approach to the mapping of acoustic sources with matching pursuit and matrix factorization[J]. Journal of Sound and Vibration,2019,459:114842. [60] CHU Z,CHEN C,YANG Y,et al. Two-dimensional total variation norm constrained deconvolution beamforming algorithm for acoustic source identification[J]. IEEE Access,2018,6:43743-43748. [61] 樊小鹏,张鑫,褚志刚,等. 分裂增广拉格朗日收缩反卷积声源识别算法[J]. 振动与冲击,2020,39(23):141-147. FAN Xiaopeng,ZHANG Xin,CHU Zhigang,et al. Split augmented Lagrange contraction deconvolution algorithm for sound source identification[J]. Journal of Vibration and Shock,2020,39(23):141-147. [62] MA W,LIU X. Improving the efficiency of DAMAS for sound source localization via wavelet compression computational grid[J]. Journal of Sound and Vibration,2017,395:341-353. [63] MA W,LIU X. DAMAS with compression computational grid for acoustic source mapping[J]. Journal of Sound and Vibration,2017,410:473-484. [64] CHU N,ZHAO H,YU L,et al. Fast and high-resolution acoustic beamforming:A convolution accelerated deconvolution implementation[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:6502415. [65] 徐亮,胡鹏,张永斌,等. 可用于相干声源的快速反卷积声源成像算法[J]. 机械工程学报,2018,54(23):82-92. XU Liang,HU Peng,ZHANG Yongbin,et al. A fast deconvolution approach for the mapping of coherent acoustic sources[J]. Journal of Mechanical Engineering,2018,54(23):82-92. [66] BAHR C J,CATTAFESTA L N. Wavespace-based coherent deconvolution[C/CD]//Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference,4-6 June 2012,Colorado Springs,Colorado,USA. AIAA-2012-2227. [67] BAHR C J,CATTAFESTA L N. Wavenumber-frequency deconvolution of aeroacoustic microphone phased array data of arbitrary coherence[J]. Journal of Sound and Vibration,2016,382:13-42. [68] SUZUKI T. DAMAS2 using a point-spread function weakly varying in space[J]. AIAA Journal,2010,48(9):2165-2169. [69] XENAKI A,JACOBSEN F,TIANA-ROIG E,et al. Improving the resolution of beamforming measurements on wind turbines[C/CD]//Proceedings of 20th International Congress on Acoustics,23-27 August 2010,Sydney,Australia. [70] XENAKI A,JACOBSEN F,FERNANDEZ-GRANDE E. Improving the resolution of three-dimensional acoustic imaging with planar phased arrays[J]. Journal of Sound and Vibration,2012,331(8):1939-1950. [71] YANG Y,CHU Z,SHEN L,et al. Enhancement of two-dimensional acoustic source identification with Fourier-based deconvolution beamforming[J]. Journal of Vibroengineering,2016,18(5):3337-3361. [72] CHU Z,CHEN C,YANG Y,et al. Improvement of Fourier-based fast iterative shrinkage-thresholding deconvolution algorithm for acoustic source identification[J]. Applied Acoustics,2017,123:64-72. [73] SHEN L,CHU Z,YANG Y,et al. Periodic boundary based FFT-FISTA for sound source identification[J]. Applied Acoustics,2018,130:87-91. [74] SHEN L,CHU Z,ZHANG Y,et al. A novel Fourier-based deconvolution algorithm with improved efficiency and convergence[J]. Journal of Low Frequency Noise Vibration and Active Control,2020,39(4):866-878. [75] FLEURY V,BULTE J. Extension of deconvolution algorithms for the mapping of moving acoustic sources[J]. Journal of the Acoustical Society of America,2011,129(3):1417-1428. [76] PANNERT W,MAIER C. Rotating beamforming-motion-compensation in the frequency domain and application of high-resolution beamforming algorithms[J]. Journal of Sound and Vibration,2014,333(7):1899-1912. [77] ZHANG X,CHU Z,YANG Y,et al. An alternative hybrid time-frequency domain approach based on fast iterative shrinkage-thresholding algorithm for rotating acoustic source identification[J]. IEEE Access,2019,7:59797-59805. [78] MA W,BAO H,ZHANG C,et al. Beamforming of phased microphone array for rotating sound source localization[J]. Journal of Sound and Vibration,2020,467:115064. [79] MO P,JIANG W. A hybrid deconvolution approach to separate static and moving single-tone acoustic sources by phased microphone array measurements[J]. Mechanical Systems and Signal Processing,2017,84:399-413. [80] MO P,JIANG W. A hybrid deconvolution approach to separate acoustic sources in multiple motion modes[J]. Journal of the Acoustical Society of America,2017,142(1):276-285. [81] CHU Z,SHEN L,YANG Y,et al. Non-negative least squares deconvolution method for mirror-ground beamforming[J]. Journal of Vibration and Control,2016,22(16):3470-3478. [82] SUN D,MA C,MEI J,et al. Improving the resolution of underwater acoustic image measurement by deconvolution[J]. Applied Acoustics,2020,165:107292. [83] SIJTSMA P. Using phased array beamforming to identify broadband noise sources in a turbofan engine[J]. International Journal of Aeroacoustics,2010,9(3):357-374. [84] 褚志刚,杨洋. 基于非负最小二乘反卷积波束形成的发动机噪声源识别[J]. 振动与冲击,2013,32(23):75-81. CHU Zhigang,YANG Yang. Noise source identification for an engine based on FFT-non-negative least square (NNLS) deconvolution beamforming[J]. Journal of Vibration and Shock,2013,32(23):75-81. [85] 杨洋,倪计民,褚志刚. 基于反卷积DAMAS2波束形成的发动机噪声源识别[J]. 内燃机工程,2014,35(2):59-65. YANG Yang,NI Jimin,CHU Zhigang. Engine noise source identification based on DAMAS2 beamforming[J]. Chinese Internal Combustion Engine Engineering,2014,35(2):59-65. [86] GERGES S N Y,FONSECA W D,DOUGHERTY R P. State of the art beamforming software and hardware for applications[C/CD]//Proceedings of the 16th International Congress on Sound and Vibration,5-9 July 2009,Kraków,Poland. ICSV 2009. [87] GADE S,HALD J,GINN B. Refined beamforming with increased spatial resolution[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings,19-22 August 2012,New York City,New York,USA. InterNoise,2012:9228-9235. [88] HALD J,MAKIHARA T,ISHII Y,et al. Mapping of contributions from car-exterior aerodynamic sources to an in-cabin reference signal using Clean-SC[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings,21-24 August 2016,Hamburg,Germany. InterNoise,2016:3732-3743. [89] HE Y,WANG B,SHEN Z,et al. Correlation analysis of interior and exterior wind noise sources of a production car using beamforming techniques[C/CD]//SAE World Congress Experience,WCX 2017,4-6 April 2017,Detroit,Michigan,USA. SAE Technical Paper:2017-01-0449. [90] HALD J,ISHII Y,ISHII T,et al. High-resolution fly-over beamforming using a small practical array[C/CD]//Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference,4-6 June 2012,Colorado Springs,Colorado,USA. AIAA-2012-2229. [91] WANG J,MA W. Deconvolution algorithms of phased microphone arrays for the mapping of acoustic sources in an airframe test[J]. Applied Acoustics,2020,164:107283. [92] 杨妍,张捷,何宾,等. 基于试验测试的桥梁与路堤区段高速列车车外噪声特性分析[J]. 机械工程学报,2019,55(20):188-197. YANG Yan,ZHANG Jie,HE Bin,et al. Analysis on exterior noise characteristics of high-speed trains in bridges and embankments section based on experiment[J]. Journal of Mechanical Engineering,2019,55(20):188-197. [93] GOMES J. Noise source identification with blade tracking on a wind turbine[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings,19-22 August 2012,New York City,New York,USA. InterNoise,2012:5115-5126. [94] RAMACHANDRAN R C,RAMAN G,DOUGHERTY R P. Wind turbine noise measurement using a compact microphone array with advanced deconvolution algorithms[J]. Journal of Sound and Vibration,2014,333(14):3058-3080. [95] YARDIBI T,ZAWODNY N,BAHR C,et al. Comparison of microphone array processing techniques for aeroacoustic measurements[J]. International Journal of Aeroacoustics,2010,9(6):733-762. [96] CHU Z,YANG Y. Comparison of deconvolution methods for the visualization of acoustic sources based on cross-spectral imaging function beamforming[J]. Mechanical Systems and Signal Processing,2014,48(1-2):404-422. [97] RAMACHANDRAN R C,RAMAN G,DOUGHERTY R P. Linear programming acoustic beamforming versus other deconvolution methods for a full scale 1.5 MW wind turbine[C/CD]//Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference,27-29 May 2013,Berlin,Germany. AIAA-2013-2057. [98] HEROLD G,SARRADJ E. Performance analysis of microphone array methods[J]. Journal of Sound and Vibration,2017,401:152-168. [99] HEROLD G,GEYER T F,SARRADJ E. Comparison of inverse deconvolution algorithms for high-resolution aeroacoustic source characterization[C/CD]//Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference,5-9 June 2017,Denver,Colorado,USA. AIAA-2017-4177. [100] SARRADJ E. A fast signal subspace approach for the determination of absolute levels from phased microphone array measurements[J]. Journal of Sound and Vibration,2010,329(9):1553-1569. [101] LEGG M,BRADLEY S. Comparison of CLEAN-SC for 2D and 3D scanning surfaces[C/CD]//Proceedings on CD of the 4th Berlin Beamforming Conference,22-23 February 2012,Berlin,Germany. BeBeC-2012-06. [102] CHU Z,YANG Y,HE Y. Deconvolution for three-dimensional acoustic source identification based on spherical harmonics beamforming[J]. Journal of Sound and Vibration,2015,344:484-502. [103] YANG Y,CHU Z,SHEN L,et al. Fast Fourier-based deconvolution for three-dimensional acoustic source identification with solid spherical arrays[J]. Mechanical Systems and Signal Processing,2018,107:183-201. [104] CHU Z,ZHAO S,YANG Y,et al. Deconvolution using CLEAN-SC for acoustic source identification with spherical microphone arrays[J]. Journal of Sound and Vibration,2019,440:161-173. [105] ZHAO S,CHU Z,YANG Y,et al. High-resolution CLEAN-SC for acoustic source identification with spherical microphone arrays[J]. Journal of the Acoustical Society of America,2019,145(6):EL598-EL603. [106] CHU Z,YANG YX,YANG Y. A new insight and improvement on deconvolution beamforming in spherical harmonics domain[J]. Applied Acoustics,2021,177:107900. [107] TIANA-ROIG E,JACOBSEN F. Deconvolution for the localization of sound sources using a circular microphone array[J]. Journal of the Acoustical Society of America,2013,134(3):2078-2089. [108] HOLMES S. Circular harmonics beamforming with spheroidal baffles[J]. Proceedings of Meetings on Acoustics,2013,19:055077. [109] HALD J. Spherical beamforming with enhanced dynamic range[J]. SAE International Journal of Passenger Cars-Mechanical Systems,2013,6(2):1334-1341. [110] 褚志刚,陈涛,赵书艺,等. 基于声压贡献的球面阵波束形成声源识别滤波求和算法[J]. 机械工程学报,2018,54(4):238-244. CHU Zhigang,CHEN Tao,ZHAO Shuyi,et al. Filter-and-sum beamforming sound source identification algorithm for spherical microphone arrays based on pressure contribution[J]. Journal of Mechanical Engineering,2018,54(4):238-244. [111] CHU Z,YIN S,YANG Y,et al. Filter-and-sum based high-resolution CLEAN-SC with spherical microphone arrays[J]. Applied Acoustics,2021,177:107900. [112] DOUGHERTY R P. Functional beamforming[C/CD]//Proceedings on CD of the 5th Berlin Beamforming Conference,19-20 February 2014,Berlin,Germany. BeBeC-2014-01. [113] DOUGHERTY R P. Functional beamforming for aeroacoustic source distributions[C/CD]//Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference,16-20 June 2014,Atlanta,Georgia,USA. AIAA-2014-3066. [114] DOUGHERTY R P. Determining spectra of aeroacoustic sources from microphone array data[C/CD]//Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference,20-23 May 2019,Delft,Netherlands. AIAA-2019-2745. [115] DOUGHERTY R P. Adaptive projection beamforming[C/CD]//Proceedings on CD of the 8th Berlin Beamforming Conference,19-20 February 2014,Berlin,Germany. BeBeC-2020-S06. [116] MERINO-MARTINEZ R,HEROLD G,SNELLEN M,et al. Assessment and comparison of the performance of functional projection beamforming for aeroacoustic measurements[C/CD]//Proceedings on CD of the 8th Berlin Beamforming Conference,2-3 March 2020,Berlin,Germany. BeBeC-2020-S7. [117] SUZUKI T. L-1 generalized inverse beam-forming algorithm resolving coherent/incoherent,distributed and multipole sources[J]. Journal of Sound and Vibration,2011,330(24):5835-5851. [118] SUZUKI T,DAY B J. Comparative study on mode-identification algorithms using a phased-array system in a rectangular duct[J]. Journal of Sound and Vibration,2015,347:27-45. [119] MERINO-MARTINEZ R,SNELLEN M,SIMONS D G. Functional beamforming applied to imaging of flyover noise on landing aircraft[J]. Journal of Aircraft,2016,53(6):1830-1843. [120] RAMACHANDRAN R C,RAMAN G. On using functional beamforming to resolve noise sources on a large wind turbine[C/CD]//Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference,16-20 June 2014,Atlanta,Georgia,USA. AIAA-2014-2914. [120] 褚志刚,段云炀,沈林邦,等. 函数波束形成声源识别性能分析及应用[J]. 机械工程学报,2017,53(4):67-76. CHU Zhigang,DUAN Yunyang,SHEN Linbang,et al. Performance analysis and application of functional beamforming sound source identification[J]. Journal of Mechanical Engineering,2017,53(4):67-76. [122] MA W,LIU X. Compression computational grid based on functional beamforming for acoustic source localization[J]. Applied Acoustics,2018,134:75-87. [123] XU Z,WANG Q,HE Y,et al. An improved algorithm for noise source localization based on equivalent source method[J]. Shock and Vibration,2016,2016:8302862. [124] LI S,XU Z,ZHANG Z,et al. Functional generalized inverse beamforming with regularization matrix applied to sound source localization[J]. Journal of Vibration and Control,2017,23(18):2977-2988. [125] LI S,XU Z,HE Y,et al. Functional generalized inverse beamforming based on the double-layer microphone array applied to separate the sound sources[J]. Journal of Vibration and Acoustics-Transactions of the ASME,2016,138(2):021013. [126] 黎术,徐中明,贺岩松,等. 基于函数广义逆波束形成的声源识别[J]. 机械工程学报,2016,52(4):1-6. LI Shu,XU Zhongming,HE Yansong,et al. Sound source identification based on functional generalized inverse beamforming[J]. Journal of Mechanical Engineering,2016,52(4):1-6. [127] 陈思,张志飞,徐中明,等. 基于高阶矩阵函数的广义逆波束形成改进算法[J]. 振动与冲击,2017,36(10):98-103. CHEN Si,ZHANG Zhifei,XU Zhongming,et al. Modified algorithm for generalized inverse beamforming based on high-order matrix function[J]. Journal of Vibration and Shock,2017,36(10):98-103. [128] ZHANG Z,CHEN S,XU Z,et al. Iterative regularization method in generalized inverse beamforming[J]. Journal of Sound and Vibration,2017,396:108-121. [129] YANG Y,CHU Z,SHEN L,et al. Functional delay and sum beamforming for three-dimensional acoustic source identification with solid spherical arrays[J]. Journal of Sound and Vibration,2016,373:340-359. |
[1] | 褚志刚, 赵洋, 杨亮, 张晋源, 杨洋. 基于稀疏贝叶斯学习的压缩球波束形成声源识别方法[J]. 机械工程学报, 2023, 59(2): 1-13. |
[2] | 杨洋, 褚志刚, 杨咏馨. 典型因素对无网格压缩波束形成声源识别的影响[J]. 机械工程学报, 2022, 58(5): 98-107. |
[3] | 徐亮, 权璐纯, 尚俊超, 李敬豪, 张小正. 基于源强先验引导的正交匹配追踪声源识别算法[J]. 机械工程学报, 2022, 58(24): 20-31. |
[4] | 杨咏馨, 褚志刚, 杨洋. 基于正交匹配追踪的二维离网压缩波束形成声源识别方法[J]. 机械工程学报, 2022, 58(11): 88-97. |
[5] | 柳明, 张捷, 高阳, 蒋文杰, 肖新标. 隧道内高速列车车内噪声特性及声源识别试验分析[J]. 机械工程学报, 2020, 56(8): 207-215. |
[6] | 樊小鹏, 余立超, 褚志刚, 杨洋, 李丽. 二维动态网格压缩波束形成声源识别方法[J]. 机械工程学报, 2020, 56(22): 46-55. |
[7] | 杨妍, 张捷, 何宾, 范静, 王德威, 肖新标. 基于试验测试的桥梁与路堤区段高速列车车外噪声特性分析[J]. 机械工程学报, 2019, 55(20): 188-197. |
[8] | 张捷, 肖新标, 姚丹, 伏蓉, 张骏. 基于心理声学参数的新型卧铺动车组包间噪声分析[J]. 机械工程学报, 2018, 54(4): 222-230. |
[9] | 褚志刚, 陈涛, 赵书艺, 肖新标. 基于声压贡献的球面阵波束形成声源识别滤波求和算法[J]. 机械工程学报, 2018, 54(4): 238-244. |
[10] | 徐亮, 胡鹏, 张永斌, 张小正. 可用于相干声源的快速反卷积声源成像算法[J]. 机械工程学报, 2018, 54(23): 82-92. |
[11] | 褚志刚, 段云炀, 沈林邦, 杨洋. 函数波束形成声源识别性能分析及应用*[J]. 机械工程学报, 2017, 53(4): 67-76. |
[12] | 黎术, 徐中明, 贺岩松, 张志飞, 陈思. 基于函数广义逆波束形成的声源识别[J]. 机械工程学报, 2016, 52(4): 1-6. |
[13] | 褚志刚, 杨洋, 贺岩松, 康润程, 王光建. 球谐函数波束形成声源识别扩展方法[J]. 机械工程学报, 2015, 51(20): 45-53. |
[14] | 李兵;杨殿阁;郑四发;李克强;连小珉. 基于遗传算法的动态优化波叠加噪声源识别方法[J]. , 2010, 46(12): 99-105. |
[15] | 徐荣武;何琳;章林柯;贲可荣. 小样本条件下潜艇机械噪声源的识别[J]. , 2008, 44(7): 151-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||