[1] CHU Zhigang,YANG Yang,SHEN Linbang. Resolution and quantification accuracy enhancement of functional delay and sum beamforming for three-dimensional acoustic source identification with solid spherical arrays[J]. Mechanical Systems and Signal Processing,2017,88(2017):274-289.
[2] CHRISTANSEN J J,HALD J. Beamforming[R]. B&K Technical Review,2004(1):1-31.
[3] BROOKS T F,HUMPHREYS W M,PLASSMAN G E. DAMAS processing for a phased array study in the NASA langley jet noise laboratory[C]//16th AIAA/CEAS Aeroacoustics Conference. Stockholm:AIAA,2010,2010-3780.
[4] WANG Yanwei,LI Jian,STOICA P,et al. Wideband RELAX and wideband CLEAN for aeroacoustic imaging[J]. Journal of the Acoustical Society of America,2004,115(2):757-767.
[5] BROOKS T F,HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. The Journal of Sound and Vibration,2006,294(4):856-879.
[6] BROOKS T F,HUMPHREYS W M. Three dimensional application of DAMAS methodology for aeroacoustic noise source definition[C]//11th AIAA/CEAS Aeroacoustics Conference. Monterey:AIAA,2005,2005-2960.
[7] ALLAIRE G,KABER S M. Numerical linear algebra[M]. New York:Springer,2008.
[8] DOUGHERTY R P. Extensions of DAMAS and benefits and limitations of deconvolution in beamforming[C]//11th AIAA/CEAS Aeroacoustics conference. Monterey:AIAA,2005,2005-2961.
[9] EHRENFRIED K,KOOP L. Comparison of iterative deconvolution algorithms for the mapping of acoustic sources[J]. AIAA Journal,2007,45(7):1584-1595.
[10] LYLLOFF O,FERNANDEZ-GRANDE E,AGERKVIST F,et al. Improving the efficiency of deconvolution algorithms for sound source localization[J]. The Journal of the Acoustical Society of America,2015,138(1):172-180.
[11] CHU Zhigang,CHEN Caihui,YANG Yang,et al. Improvement of fourier-based fast iterative shrinkage-thresholding deconvolution algorithm for acoustic source identification[J]. Applied Acoustics,2017,123(2017):64-72.
[12] SHEN Linbang,CHU Zhigang,YANG Yang,et al. Periodic boundary based FFT-FISTA for sound source identification[J]. Applied Acoustics,2018,130(2018):87-91.
[13] SIMARD P,ANTONI J. Acoustic source identification:Experimenting the L1 minimization approach[J]. Applied Acoustics,2013,74(7):974-986.
[14] 时洁,杨德森,时胜国,等. 基于压缩感知的矢量阵聚焦定位方法[J]. 物理学报,2016,65(2):024302. SHI Jie,YANG Desen,SHI Shengguo,et al. Compressive focused beamforming based on vector sensor array[J]. Acta Physica Sinica,2016,65(2):024302.
[15] 宁方立,卫金刚,刘勇,等. 压缩感知声源定位方法研究[J]. 机械工程学报,2016,52(19):42-52. NING Fangli,WEI Jingang,LIU Yong,et al. Study on sound sources localization using compressive sensing[J]. Journal of Mechanical Engineering,2016,52(19):42-52.
[16] YARDIBI T,LI Jian,STOICA P,et al. Sparsity constrained deconvolution approaches for acoustic source mapping[J]. The Journal of the Acoustical Society of America,2008,123(5):2631-2642.
[17] PADOIS T,BERRY A. Orthogonal matching pursuit applied to the deconvolution approach for the mapping of acoustic sources inverse problem[J]. The Journal of the Acoustical Society of America,2015,138(6):3678-3685.
[18] TROPP J A,GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory,2007,53(12):4655-4666.
[19] BROOKS T F,HUMPHREYS W M. Extension of DAMAS phased array processing for spatial coherence determination (DAMAS-C)[C]//12th AIAA/CEAS Aeroacoustics Conference. Cambridge:AIAA,2006,2006-2654.
[20] ALLEN C S,BLAKE W K,DOUGHERTY R P,et al. Aeroacoustic measurements[M]. Berlin Heidelberg:Springer,2002.
[21] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society,1996,58(1):267-288.
[22] GRANT M,BOYD S. CVX:Matlab software for disciplined convex programming,version 1.21[OL].[2017-08-09]. http://cvxr.com/cvx.
[23] 何晓群. 多元统计分析[M]. 北京:中国人民大学出版社,2008. HE Xiaoqun. Multivariate statistical analysis[M]. Beijing:China Renmin University Press,2008. |