• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (21): 55-67.doi: 10.3901/JME.2021.21.055

• 机器人及机构学 • 上一篇    下一篇

扫码分享

基于标定和关节空间插值的工业机器人轨迹误差补偿

高贯斌, 张石文, 那靖, 刘飞   

  1. 昆明理工大学机电工程学院 昆明 650500
  • 收稿日期:2020-10-14 修回日期:2021-01-27 出版日期:2021-11-05 发布日期:2021-12-28
  • 作者简介:高贯斌,男,1979年出生,博士,教授,博士研究生导师。主要研究方向为机器人学、精密测量与控制。E-mail:gbgao@163.com;张石文,男,1994年出生,硕士研究生。主要研究方向为机器人精度控制。E-mail:2983439137@qq.com;那靖,男,1982年出生,博士,教授,博士研究生导师。主要研究方向为复杂机电系统建模及智能控制。E-mail:najing25@163.com;刘飞,男,1991年出生,博士研究生。主要研究方向为机器人学、精密测量与控制。E-mail:liufei2017@foxmail.com
  • 基金资助:
    国家自然科学基金(51865020)资助项目。

Compensation of Trajectory Error for Industrial Robots by Interpolation and Calibration Method in the Joint Space

GAO Guanbin, ZHANG Shiwen, NA Jing, LIU Fei   

  1. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500
  • Received:2020-10-14 Revised:2021-01-27 Online:2021-11-05 Published:2021-12-28

摘要: 轨迹精度是工业机器人重要的动态性能,目前工业机器人的轨迹精度远低于定位精度,提出一种基于机器人运动学标定和关节空间插值误差补偿的方法来提高机器人轨迹精度。基于MD-H方法建立机器人的运动学模型,在此基础上运用机器人微分运动学理论建立末端位置误差模型和轨迹误差模型。为克服最小二乘法等传统方法在数据噪声较大且不符合高斯分布时收敛慢甚至发散的问题,提出一种基于扩展卡尔曼滤波算法的机器人运动学参数辨识方法,实现运动学参数辨识的快速收敛。经过分析发现机器人误差在关节空间具有连续性的特点,为此提出一种关节空间插值误差补偿方法,建立网格形式的误差补偿数据库,并利用关节空间距离权重函数和已知的网格顶点误差计算各控制点的关节转角误差。通过试验对所提出的参数辨识和关节空间误差补偿方法进行了验证,试验结果表明:经过运动学参数辨识和补偿后机器人的绝对定位精度由1.039 mm提高到0.226 mm,轨迹精度由2.532 mm提高到1.873 mm,应用关节空间插值误差补偿后机器人的轨迹精度进一步提高到1.464 mm。

关键词: 工业机器人, 轨迹精度, 扩展卡尔曼滤波, 误差补偿, 参数辨识

Abstract: Trajectory accuracy is an important dynamic performance of industrial robots, which is far lower than the positioning accuracy at present. A method based on kinematic parameter identification and interpolation error compensation in the joint space is proposed to improve the trajectory accuracy of industrial robots. The kinematics model of the robot is established based on MD-H method. Then, the positioning error model and the trajectory error model are established by using the differential kinematics theory of robots. To overcome the problem of slow convergence or even divergence of traditional methods such as the least square method when the data noise is large and does not conform to the Gaussian distribution, a robot kinematics parameter identification method based on extended Kalman filter (EKF) algorithm is proposed to realize the fast convergence of kinematic parameter identification. By analysis, we find that the error of robots in joint space has the characteristics of continuity. Therefore, an interpolation error compensation method in the joint space is proposed. The error compensation database in grid form is established. The joint angle error of each control point is calculated by using the distance weight function in the joint space. The experimental results show that the absolute positioning accuracy of the robot is increased from 1.039 mm to 0.226 mm, and the trajectory accuracy is increased from 2.532 mm to 1.873 mm. The trajectory accuracy of the robot is further improved to 1.464 mm after the interpolation error compensation in the joint space.

Key words: industrial robot, trajectory accuracy, extended Kalman filter, error compensation, parameter identification

中图分类号: