[1] 高朝辉, 张普卓, 刘宇, 等. 垂直返回重复使用运载火箭技术分析[J]. 宇航学报, 2016, 37(2):145-152. GAO Zhaohui, ZHANG Puzhuo, LIU Yu, et al. Technical analysis of vertical return reusable launch vehicle[J]. Journal of Astronautics, 2016, 37(2):145-152. [2] DUMBACHER D, KLEVATT P. DC-XA-First step top a reusable launch vehicle[C]//Space Programs and Technologies Conference and Exhibit. Huntsville:AIAA, 1994:AIAA 1994-4682. [3] 崔乃刚, 吴荣, 韦常柱, 等. 垂直起降可重复使用运载器发展现状与关键技术分析[J]. 宇航总体技术, 2018, 2(2):27-42. CUI Naigang, WU Rong, WEI Changzhu, et al. Analysis on the development status and key technologies of vertical take-off and landing reusable vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(2):27-42. [4] 张雪松. Nemo.蓝色起源的新格伦火箭[J]. 卫星与网络, 2017(4):68-69. ZHANG Xuesong. Nemo. New Glenn rocket of Blue Origin[J]. Satellite and Network, 2017(4):68-69. [5] 李杨, 刘昶, 王吉飞, 等. 垂直起降运载火箭总体方案研究[J]. 南京航空航天大学学报, 2019, 51(S1):1-6. LI Yang, LIU Chang, WANG Jifei, et al. Research on the overall plan of the vertical take-off and landing launch vehicle[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019, 51(S1):1-6 [6] 肖杰, 张明, 岳帅, 等. 新型垂直起降运载器着陆支架收放系统设计与分析[J]. 机械设计与制造工程, 2017, 46(3):30-35. XIAO Jie, ZHANG Ming, YUE Shuai, et al. Design and analysis on new landing support of vertical take-off and landing launch vehicle[J]. Machine Design and Manufacturing Engineering, 2017, 46(3):30-35. [7] YUE S, TITURUS B, NIE H, et al. Liquid spring damper for vertical landing reusable launch vehicle under impact conditions[J]. Mechanical Systems and Signal Processing, 2019, 121(APR.15):579-599. [8] DING Z, WU H, WANG C, et al. Hierarchical optimization of landing performance for lander with adaptive landing gear[J]. Chinese Journal of Mechanical Engineering, 2019, 32(2):24-35. [9] HUANG M. Control strategy of launch vehicle and lander with adaptive landing gear for sloped landing[J]. Acta Astronautica, 2019, 161:509-523 [10] ZHANG H, HUANG Y, MO Z, et al. Mechanism and machine science[M]. Singapore:Springer, 2016. [11] NISAR S, ENDO T, MATSUNO F. Design and optimization of a 2-degree-of-freedom planar remote center of motion mechanism for surgical manipulators with smaller footprint[J]. Mechanism and Machine Theory, 2018, 129:148-161. [12] HENRY R, CHABLAT D, POREZ M, et al. Multi-objective design optimization of the leg mechanism for a piping inspection robot[C]//ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection, New York:ASME, 2014:DETC2014-34057 [13] HUANG M. Optimization of flapping wing mechanism of bionic eagle[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(9):3260-3272 [14] YOU W, KONG M, SUN L, et al. Optimal design of dynamic and control performance for planar manipulator[J]. Journal of Central South University, 2012, 19(1):108-116. [15] 张林, 李俊明, 吴承格, 等. 可控装载机构动力学分析与优化设计[J]. 机械传动, 2018, 42(2):52-56. ZHANG Lin, LI Junming, WU Chengge, et al. Dynamic analysis and optimization design of controllable loading mechanism[J]. Journal of Mechanical Transmission, 2018, 42(2):52-56. [16] 李团结, 王鹏. 一种多环闭链空间可展开机构的尺度协同优化设计[J]. 西安电子科技大学学报, 2017, 44(3):19-24. LI Tuanjie, WANG Peng. Scale collaborative optimization design of a multi-loop closed-chain space expandable mechanism[J]. Journal of Xidian University, 2017, 44(3):19-24. [17] 李波, 陈晓峰. 空间杆状构架式展开机构拓扑型综合与分析[J]. 上海航天, 2015, 32(1):25-29. LI Bo, CHEN Xiaofeng. Topological synthesis and analysis of spatial rod-shaped deployment mechanism[J]. Aerospace Shanghai, 2015, 32(1):25-29. [18] 蔡敢为, 张林, 王小纯, 等. 多自由度可控装载机构的构型设计与综合研究[J]. 机械设计与制造, 2015(4):1-4. CAI Ganwei, ZHANG Lin, WANG Xiaochun, et al. Configuration design and comprehensive study of multi-degree-of-freedom controllable loading mechanism[J]. Machinery Design and Manufacture, 2015(4):1-4. [19] 王英, 李瑞琴, 宋胜涛. 平面三自由度连杆机构的型综合[J]. 机械传动, 2014, 38(7):60-62. WANG Ying, LI Ruiqin, SONG Shengtao. Type synthesis of planar three-degree-of-freedom link mechanism[J]. Journal of Mechanical Transmission, 2014, 38(7):60-62. [20] 韩春玲, 王修贵, 时述凤. 水工模型试验中的相似性定律[J]. 中国水运(学术版), 2006(10):67-70. HAN Chunling, WANG Xiugui, SHI Shufeng. The Law of Similarity in Hydraulic Model Tests[J]. China Water Transport(Academic Version), 2006(10):67-70. [21] 彭小波. 可重复使用新型航天飞行器结构设计[M]. 北京:中国宇航出版社, 2016. PENG Xiaobo. Structural design of reusable new space vehicle[M]. Beijing:China Aerospace Press, 2016. [22] ZHANG Wuxiang, WU Teng, DING Xilun. An optimization method for metamorphic mechanisms based on multidisciplinary design optimization[J]. Chinese Journal of Aeronautics, 2014, 27(6):1612-1618. [23] YUE S, NIE H, ZHANG M, et al. Optimization and performance analysis of oleo-honeycomb damper used in vertical landing reusable launch vehicle[J]. Journal of Aerospace Engineering, 2018, 31(2):04018002. [24] WIERZBICKI T. Crushing analysis of metal honeycombs[J]. International Journal of Impact Engineering, 1983, 1(2):157-174. [25] 王建伟, 王刚, 温激鸿, 等. 航天器发射阶段声振环境载荷控制技术研究进展[J]. 噪声与振动控制, 2011, 31(1):1-8. WANG Jianwei, WANG Gang, WEN Jihong, et al. Research progress of acoustic vibration environment load control technology during the launch phase of spacecraft[J]. Noise and Vibration Control, 2011, 31(1):1-8. |